Elements Of Modern Algebra
Elements Of Modern Algebra
8th Edition
ISBN: 9781285463230
Author: Gilbert, Linda, Jimmie
Publisher: Cengage Learning,
bartleby

Videos

Question
Book Icon
Chapter 8.2, Problem 19E

a)

To determine

Whether the polynomial x43x3+3x23x+2 is an element of I or not, where I be the principal ideal (x2+1)={(x2+1)f(x)|f(x)Z[x]}.

b)

To determine

Whether the polynomial x4+x32x2+x+1 is an element of I or not, where I be the principal ideal (x2+1)={(x2+1)f(x)|f(x)Z[x]}.

Blurred answer
Students have asked these similar questions
In Z3[x], show that the distinct polynomials x4 + x and x2 + x determinethe same function from Z3 to Z3.
Let a be a root of the polynomial x3+x+3, which is irreducible over Q. The polynomial x2-2 is also irreducible over Q. Is x2 − 2 reducible over Q(a)? Give your answer in detail
(d) Show that x² + x + 4 is irreducible over Z₁1. Write x³ + x² + x + 1 as a product of irrducible polynomials in Z₂[x].

Chapter 8 Solutions

Elements Of Modern Algebra

Ch. 8.1 - Consider the following polynomial over Z9, where a...Ch. 8.1 - 5. Decide whether each of the following subset is...Ch. 8.1 - Determine which subset in Exercise 5 are ideals of...Ch. 8.1 - Prove that [ x ]={ a0+a1x+...+anxna0=2kfork }, the...Ch. 8.1 - Prob. 8ECh. 8.1 - Prob. 9ECh. 8.1 - Let R be a commutative ring with unity. Prove that...Ch. 8.1 - 11. a. List all the polynomials in that have...Ch. 8.1 - a. Find a nonconstant polynomial in Z4[ x ], if...Ch. 8.1 - Prob. 13ECh. 8.1 - 14. Prove or disprove that is a field if is a...Ch. 8.1 - 15. Prove that if is an ideal in a commutative...Ch. 8.1 - a. If R is a commutative ring with unity, show...Ch. 8.1 - Prob. 17ECh. 8.1 - 18. Let be a commutative ring with unity, and let...Ch. 8.1 - Prob. 19ECh. 8.1 - Consider the mapping :Z[ x ]Zk[ x ] defined by...Ch. 8.1 - Describe the kernel of epimorphism in Exercise...Ch. 8.1 - Assume that each of R and S is a commutative ring...Ch. 8.1 - Describe the kernel of epimorphism in Exercise...Ch. 8.1 - Prob. 24ECh. 8.1 - (See exercise 24.) Show that the relation...Ch. 8.2 - Label each of the following statements as either...Ch. 8.2 - Prob. 2TFECh. 8.2 - Prob. 3TFECh. 8.2 - Prob. 1ECh. 8.2 - Prob. 2ECh. 8.2 - Prob. 3ECh. 8.2 - For , , and given in Exercises 1-6, find and in...Ch. 8.2 - Prob. 5ECh. 8.2 - For , , and given in Exercises 1-6, find and in...Ch. 8.2 - Prob. 7ECh. 8.2 - Prob. 8ECh. 8.2 - Prob. 9ECh. 8.2 - Prob. 10ECh. 8.2 - For f(x), g(x), and Zn[ x ] given in Exercises...Ch. 8.2 - For f(x), g(x), and Zn[ x ] given in Exercises...Ch. 8.2 - Prob. 13ECh. 8.2 - Prob. 14ECh. 8.2 - Prob. 15ECh. 8.2 - Prob. 16ECh. 8.2 - Prob. 17ECh. 8.2 - Prob. 18ECh. 8.2 - Prob. 19ECh. 8.2 - Prob. 20ECh. 8.2 - Prob. 21ECh. 8.2 - Prob. 22ECh. 8.2 - Prob. 23ECh. 8.2 - Prob. 24ECh. 8.2 - Prob. 25ECh. 8.2 - Prob. 26ECh. 8.2 - Prob. 27ECh. 8.2 - Prob. 28ECh. 8.2 - Prob. 29ECh. 8.2 - Prob. 30ECh. 8.2 - Prob. 31ECh. 8.2 - Prob. 32ECh. 8.2 - Prob. 33ECh. 8.2 - Prob. 34ECh. 8.2 - Prob. 35ECh. 8.3 - True or False Label each of the following...Ch. 8.3 - Label each of the following statements as either...Ch. 8.3 - Prob. 3TFECh. 8.3 - True or False Label each of the following...Ch. 8.3 - Prob. 5TFECh. 8.3 - Prob. 6TFECh. 8.3 - Prob. 7TFECh. 8.3 - True or False Label each of the following...Ch. 8.3 - Prob. 9TFECh. 8.3 - Prob. 1ECh. 8.3 - Let Q denote the field of rational numbers, R the...Ch. 8.3 - Find all monic irreducible polynomials of degree 2...Ch. 8.3 - Write each of the following polynomials as a...Ch. 8.3 - Let F be a field and f(x)=a0+a1x+...+anxnF[x]....Ch. 8.3 - Prove Corollary 8.18: A polynomial of positive...Ch. 8.3 - Corollary requires that be a field. Show that...Ch. 8.3 - Let be an irreducible polynomial over a field ....Ch. 8.3 - Let be a field. Prove that if is a zero of then...Ch. 8.3 - Prob. 10ECh. 8.3 - Prob. 11ECh. 8.3 - Prob. 12ECh. 8.3 - Prob. 13ECh. 8.3 - Prob. 14ECh. 8.3 - Prob. 15ECh. 8.3 - Prob. 16ECh. 8.3 - Suppose that f(x),g(x), and h(x) are polynomials...Ch. 8.3 - Prove that a polynomial f(x) of positive degree n...Ch. 8.3 - Prove Theorem Suppose is an irreducible...Ch. 8.3 - Prove Theorem If and are relatively prime...Ch. 8.3 - Prove the Unique Factorization Theorem in ...Ch. 8.3 - Let ab in a field F. Show that x+a and x+b are...Ch. 8.3 - Let f(x),g(x),h(x)F[x] where f(x) and g(x) are...Ch. 8.3 - Prob. 24ECh. 8.3 - Prob. 25ECh. 8.3 - Prob. 26ECh. 8.3 - Prob. 27ECh. 8.4 - Label each of the following statements as either...Ch. 8.4 - Prob. 2TFECh. 8.4 - Prob. 3TFECh. 8.4 - Prob. 4TFECh. 8.4 - Prob. 5TFECh. 8.4 - Prob. 6TFECh. 8.4 - Prob. 7TFECh. 8.4 - Prob. 8TFECh. 8.4 - Prob. 9TFECh. 8.4 - Prob. 10TFECh. 8.4 - True or False Label each of the following...Ch. 8.4 - Prob. 12TFECh. 8.4 - Prob. 13TFECh. 8.4 - Prob. 14TFECh. 8.4 - Prob. 15TFECh. 8.4 - 1. Find a monic polynomial of least degree over ...Ch. 8.4 - One of the zeros is given for each of the...Ch. 8.4 - Prob. 3ECh. 8.4 - Prob. 4ECh. 8.4 - Prob. 5ECh. 8.4 - Prob. 6ECh. 8.4 - Prob. 7ECh. 8.4 - Prob. 8ECh. 8.4 - Prob. 9ECh. 8.4 - Prob. 10ECh. 8.4 - Prob. 11ECh. 8.4 - Prob. 12ECh. 8.4 - Factor each of the polynomial in Exercise as a...Ch. 8.4 - Factor each of the polynomial in Exercise as a...Ch. 8.4 - Prob. 15ECh. 8.4 - Factors each of the polynomial in Exercise 1316 as...Ch. 8.4 - Prob. 17ECh. 8.4 - Show that the converse of Eisenstein’s...Ch. 8.4 - Prob. 19ECh. 8.4 - Prob. 20ECh. 8.4 - Use Theorem to show that each of the following...Ch. 8.4 - Prob. 22ECh. 8.4 - Prove that for complex numbers . Ch. 8.4 - Prob. 24ECh. 8.4 - Prob. 25ECh. 8.4 - Prob. 26ECh. 8.4 - Prob. 27ECh. 8.4 - Prob. 28ECh. 8.4 - Prob. 29ECh. 8.4 - Prob. 30ECh. 8.4 - Prob. 31ECh. 8.4 - Prob. 32ECh. 8.4 - Let where is a field and let . Prove that if is...Ch. 8.4 - Prob. 34ECh. 8.4 - Prob. 35ECh. 8.5 - Prob. 1TFECh. 8.5 - Prob. 2TFECh. 8.5 - Prob. 3TFECh. 8.5 - Prob. 4TFECh. 8.5 - Prob. 1ECh. 8.5 - Prob. 2ECh. 8.5 - Prob. 3ECh. 8.5 - Prob. 4ECh. 8.5 - Prob. 5ECh. 8.5 - Prob. 6ECh. 8.5 - In Exercises , use the techniques presented in...Ch. 8.5 - Prob. 8ECh. 8.5 - Prob. 9ECh. 8.5 - Prob. 10ECh. 8.5 - Prob. 11ECh. 8.5 - Prob. 12ECh. 8.5 - Prob. 13ECh. 8.5 - Prob. 14ECh. 8.5 - Prob. 15ECh. 8.5 - Prob. 16ECh. 8.5 - Prob. 17ECh. 8.5 - Prob. 18ECh. 8.5 - Prob. 19ECh. 8.5 - Prob. 20ECh. 8.5 - Prob. 21ECh. 8.5 - Prob. 22ECh. 8.5 - Prob. 23ECh. 8.5 - Prob. 24ECh. 8.5 - Prob. 25ECh. 8.5 - Prob. 26ECh. 8.5 - Prob. 27ECh. 8.5 - Prob. 28ECh. 8.5 - Prob. 29ECh. 8.5 - Prob. 30ECh. 8.5 - Derive the quadratic formula by using the change...Ch. 8.5 - Prob. 32ECh. 8.6 - True or False Label each of the following...Ch. 8.6 - Prob. 2TFECh. 8.6 - Prob. 3TFECh. 8.6 - Prob. 1ECh. 8.6 - Prob. 2ECh. 8.6 - Prob. 3ECh. 8.6 - In Exercises, a field , a polynomial over , and...Ch. 8.6 - In Exercises , a field , a polynomial over , and...Ch. 8.6 - In Exercises , a field , a polynomial over , and...Ch. 8.6 - Prob. 7ECh. 8.6 - If is a finite field with elements, and is a...Ch. 8.6 - Construct a field having the following number of...Ch. 8.6 - Prob. 10ECh. 8.6 - Prob. 11ECh. 8.6 - Prob. 12ECh. 8.6 - Prob. 13ECh. 8.6 - Prob. 14ECh. 8.6 - Prob. 15ECh. 8.6 - Each of the polynomials in Exercises is...Ch. 8.6 - Prob. 17ECh. 8.6 - Prob. 18E
Knowledge Booster
Background pattern image
Algebra
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Text book image
Elements Of Modern Algebra
Algebra
ISBN:9781285463230
Author:Gilbert, Linda, Jimmie
Publisher:Cengage Learning,
Text book image
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Text book image
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Text book image
College Algebra
Algebra
ISBN:9781305115545
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
Text book image
College Algebra
Algebra
ISBN:9781337282291
Author:Ron Larson
Publisher:Cengage Learning
Text book image
Algebra for College Students
Algebra
ISBN:9781285195780
Author:Jerome E. Kaufmann, Karen L. Schwitters
Publisher:Cengage Learning
Algebraic Complexity with Less Relations; Author: The University of Chicago;https://www.youtube.com/watch?v=ZOKM1JPz650;License: Standard Youtube License
Strassen's Matrix Multiplication - Divide and Conquer - Analysis of Algorithm; Author: Ekeeda;https://www.youtube.com/watch?v=UnpySHwAJsQ;License: Standard YouTube License, CC-BY
Trigonometric Equations with Complex Numbers | Complex Analysis #6; Author: TheMathCoach;https://www.youtube.com/watch?v=zdD8Dab1T2Y;License: Standard YouTube License, CC-BY