A 50 -lb weight is supported from two cables and the system is in equilibrium. The magnitudes of the forces on the cables are denoted by | F 1 and F 2 | , respectively. An engineering student knows that the horizontal components of the two forces (shown in red) must be equal in magnitude. Furthermore, the sum of the magnitudes of the vertical components of the forces (shown in blue) must be equal to 50 -lb to offset the downward force of the weight. Find the values of | F 1 and F 2 | . Write the answers in exact form with no radical in the denominator. Also give approximations to 1 decimal place.
A 50 -lb weight is supported from two cables and the system is in equilibrium. The magnitudes of the forces on the cables are denoted by | F 1 and F 2 | , respectively. An engineering student knows that the horizontal components of the two forces (shown in red) must be equal in magnitude. Furthermore, the sum of the magnitudes of the vertical components of the forces (shown in blue) must be equal to 50 -lb to offset the downward force of the weight. Find the values of | F 1 and F 2 | . Write the answers in exact form with no radical in the denominator. Also give approximations to 1 decimal place.
Solution Summary: The author calculates a 50lb weight supported from two cables and the system is in equilibrium. The horizontal components of the two forces must be equal in magnitude.
A
50
-lb
weight is supported from two cables and the system is in equilibrium. The magnitudes of the forces on the cables are denoted by
|
F
1
and
F
2
|
,
respectively. An engineering student knows that the horizontal components of the two forces (shown in red) must be equal in magnitude. Furthermore, the sum of the magnitudes of the vertical components of the forces (shown in blue) must be equal to
50
-lb
to offset the downward force of the weight. Find the values of
|
F
1
and
F
2
|
.
Write the answers in exact form with no radical in the denominator. Also give approximations to 1 decimal place.
Let h(x, y, z)
=
—
In (x) — z
y7-4z
-
y4
+ 3x²z — e²xy ln(z) + 10y²z.
(a) Holding all other variables constant, take the partial derivative of h(x, y, z) with
respect to x, 2 h(x, y, z).
მ
(b) Holding all other variables constant, take the partial derivative of h(x, y, z) with
respect to y, 2 h(x, y, z).
ints) A common representation of data uses matrices and vectors, so it is helpful
to familiarize ourselves with linear algebra notation, as well as some simple operations.
Define a vector ♬ to be a column vector. Then, the following properties hold:
• cu with c some constant, is equal to a new vector where every element in cv is equal
to the corresponding element in & multiplied by c. For example, 2
2
=
● √₁ + √2 is equal to a new vector with elements equal to the elementwise addition of
₁ and 2. For example,
問
2+4-6
=
The above properties form our definition for a linear combination of vectors. √3 is a
linear combination of √₁ and √2 if √3 = a√₁ + b√2, where a and b are some constants.
Oftentimes, we stack column vectors to form a matrix. Define the column rank of
a matrix A to be equal to the maximal number of linearly independent columns in
A. A set of columns is linearly independent if no column can be written as a linear
combination of any other column(s) within the set. If all…
The graph of f(x) is given below. Select each true statement about the continuity of f(x) at x = 3.
Select all that apply:
7
-6-
5
4
3
2
1-
-7-6-5-4-3-2-1 1 2 3 4 5 6 7
+1
-2·
3.
-4
-6-
f(x) is not continuous at a
=
3 because it is not defined at x = 3.
☐
f(x) is not continuous at a
=
- 3 because lim f(x) does not exist.
2-3
f(x) is not continuous at x = 3 because lim f(x) ‡ ƒ(3).
→3
O f(x) is continuous at a = 3.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.