Two 8-kg blocks A and B resting on shelves are connected by a rod of negligible mass. Knowing that the magnitude of a horizontal force P applied at C is slowly increased from zero, determine the value of P for which motion occurs and what that motion is when the coefficient of static friction between all surfaces is (a) μs = 0.40, (b) μs = 0.50.
Fig. P8.43
(a)
Find the magnitude of horizontal force P applied at C for which the motion occurs.
Answer to Problem 8.43P
The magnitude of the horizontal force P is
The system
Explanation of Solution
Given information:
The mass of the blocks A and B is
The coefficient of static friction between the surfaces is
Calculation:
Consider the blocks will slide to the right.
Find the weight (W) of the blocks A and B using the relation.
Here, the acceleration due to gravity is g.
Consider the acceleration due to gravity is
Substitute 8 kg for m and
Find the friction force at block A and B as follows.
Here, the normal force at block A is
Show the free-body diagram of the shelves as in Figure 1.
Resolve the vertical component of forces.
Resolve the horizontal component of forces.
Substitute 0.40 for
Therefore, the magnitude of the horizontal force P is
Take moment about point B.
Substitute 62.8 N for P and 0.40 for
Therefore, the system
(b)
Find the magnitude of horizontal force P applied at C for which the motion occurs.
Answer to Problem 8.43P
The
The magnitude of the horizontal force P is
Explanation of Solution
Given information:
The mass of the blocks A and B is
The coefficient of static friction between the surfaces is
Calculation:
Consider the blocks will slide to the right.
Find the weight (W) of the blocks A and B using the relation.
Here, the acceleration due to gravity is g.
Consider the acceleration due to gravity is
Substitute 8 kg for m and
Find the friction force at block A and B as follows.
Here, the normal force at block A is
Resolve the vertical component of forces.
Resolve the horizontal component of forces.
Substitute 0.50 for
Therefore, the magnitude of the horizontal force P is
Take moment about point B.
Substitute 78.48 N for P and 0.50 for
Therefore, the
The value of
Take moment about point B.
Substitute 0 for
Therefore, the magnitude of the horizontal force P is
Want to see more full solutions like this?
Chapter 8 Solutions
Connect 1 Semester Access Card for Vector Mechanics for Engineers: Statics and Dynamics
- (b) A steel 'hot rolled structural hollow section' column of length 5.75 m, has the cross-section shown in Figure Q.5(b) and supports a load of 750 kN. During service, it is subjected to axial compression loading where one end of the column is effectively restrained in position and direction (fixed) and the other is effectively held in position but not in direction (pinned). i) Given that the steel has a design strength of 275 MN/m², determine the load factor for the structural member based upon the BS5950 design approach using Datasheet Q.5(b). [11] ii) Determine the axial load that can be supported by the column using the Rankine-Gordon formula, given that the yield strength of the material is 280 MN/m² and the constant *a* is 1/30000. [6] 300 600 2-300 mm wide x 5 mm thick plates. Figure Q.5(b) L=5.75m Pinned Fixedarrow_forwardHelp ارجو مساعدتي في حل هذا السؤالarrow_forwardHelp ارجو مساعدتي في حل هذا السؤالarrow_forward
- Q2: For the following figure, find the reactions of the system. The specific weight of the plate is 500 lb/ft³arrow_forwardQ1: For the following force system, find the moments with respect to axes x, y, and zarrow_forwardQ10) Body A weighs 600 lb contact with smooth surfaces at D and E. Determine the tension in the cord and the forces acting on C on member BD, also calculate the reaction at B and F. Cable 6' 3' wwwarrow_forward
- Help ارجو مساعدتي في حل هذا السؤالarrow_forwardQ3: Find the resultant of the force system.arrow_forwardQuestion 1 A three-blade propeller of a diameter of 2 m has an activity factor AF of 200 and its ratio of static thrust coefficient to static torque coefficient is 10. The propeller's integrated lift coefficient is 0.3.arrow_forward
- (L=6847 mm, q = 5331 N/mm, M = 1408549 N.mm, and El = 8.6 x 1014 N. mm²) X A ΕΙ B L Y Marrow_forwardCalculate the maximum shear stress Tmax at the selected element within the wall (Fig. Q3) if T = 26.7 KN.m, P = 23.6 MPa, t = 2.2 mm, R = 2 m. The following choices are provided in units of MPa and rounded to three decimal places. Select one: ○ 1.2681.818 O 2. 25745.455 O 3. 17163.636 O 4. 10727.273 ○ 5.5363.636arrow_forwardIf L-719.01 mm, = 7839.63 N/m³, the normal stress σ caused by self-weight at the location of the maximum normal stress in the bar can be calculated as (Please select the correct value of σ given in Pa and rounded to three decimal places.) Select one: ○ 1. 1409.193 2. 845.516 O 3. 11273.545 ○ 4.8455.159 ○ 5.4509.418 6. 2818.386 7.5636.772arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY