A 1.2-m plank with a mass of 3 kg rests on two joists. Knowing that the coefficient of static friction between the plank and the joists is 0.30, determine the magnitude of the horizontal force required to move the plank when (a) a = 750 mm, (b) a = 900 mm.
Fig. P8.37
(a)

Find the magnitude of the horizontal force required to move the plank.
Answer to Problem 8.37P
The magnitude of the horizontal force required to move the plank is
Explanation of Solution
Given information:
The length of the plank is
The mass of each plank is
The coefficient of static friction between the plank and the joists is
The distance between the points A and C in the plank is
Calculation:
Find the friction force (F) using the relation.
Show the free-body diagram of the member AB is vertical plane as in Figure 1.
Take moment about point A.
Resolve the vertical component of forces.
Show the free-body diagram of the member AB is horizontal plane as in Figure 2.
Take moment about point A.
Resolve the vertical component of forces.
Find the weight of the plank (W) using the relation.
Here, the acceleration due to gravity is g.
Consider the acceleration due to gravity is
Substitute 3 kg for m and
Substitute 29.43 N for W, 1.2 m for L, and 750 mm for a in Equation (1).
Substitute 29.43 N for W, 1.2 m for L, and 750 mm for a in Equation (2).
Substitute 1.2 m for L, and 750 mm for a in Equation (3).
Substitute 1.2 m for L, and 750 mm for a in Equation (4).
At point A, the plank to slip;
Find the horizontal force P using the relation.
Substitute 0.6P for
At point C, the plank to slip;
Find the horizontal force P using the relation.
Substitute 1.6P for
The smallest value of P will slip the plank. The plank will slip at A.
Therefore, the magnitude of the horizontal force required is
(b)

Find the magnitude of the horizontal force required to move the plank.
Answer to Problem 8.37P
The magnitude of the horizontal force required is
Explanation of Solution
Given information:
The length of the plank is
The mass of each plank is
The coefficient of static friction between the plank and the joists is
The distance between the points A and C in the plank is
Calculation:
Refer part (a) for calculation.
Substitute 29.43 N for W, 1.2 m for L, and 900 mm for a in Equation (1).
Substitute 29.43 N for W, 1.2 m for L, and 900 mm for a in Equation (2).
Substitute 1.2 m for L, and 900 mm for a in Equation (3).
Substitute 1.2 m for L, and 900 mm for a in Equation (4).
At point A, the plank to slip;
Find the horizontal force P using the relation.
Substitute 0.3333P for
At point C, the plank to slip;
Find the horizontal force P using the relation.
Substitute 1.3333P for
The smallest value of P will slip the plank. The plank will slip at C.
Therefore, the magnitude of the horizontal force required is
Want to see more full solutions like this?
Chapter 8 Solutions
VECTOR MECH....F/ENGNRS-STATICS -CONNECT
- My ID#016948724 please solve this problems and show me every step clear to follow pleasearrow_forwardMy ID# 016948724arrow_forwardPlease do not use any AI tools to solve this question. I need a fully manual, step-by-step solution with clear explanations, as if it were done by a human tutor. No AI-generated responses, please.arrow_forward
- Please do not use any AI tools to solve this question. I need a fully manual, step-by-step solution with clear explanations, as if it were done by a human tutor. No AI-generated responses, please.arrow_forwardPlease do not use any AI tools to solve this question. I need a fully manual, step-by-step solution with clear explanations, as if it were done by a human tutor. No AI-generated responses, please.arrow_forward[Q2]: The cost information supplied by the cost accountant is as follows:Sales 20,00 units, $ 10 per unitCalculate the (a/ newsale guantity and (b) new selling price to earn the sameVariable cost $ 6 per unit, Fixed Cost $ 30,000, Profit $ 50,000profit ifi) Variable cost increases by $ 2 per unitil) Fixed cost increase by $ 10,000Ili) Variable cost increase by $ 1 per unit and fixed cost reduces by $ 10,000arrow_forward
- can you please help me perform Visual Inspection and Fractography of the attatched image: Preliminary examination to identify the fracture origin, suspected fatigue striation, and corrosion evidences.arrow_forwardcan you please help[ me conduct Causal Analysis (FTA) on the scenario attatched: FTA diagram which is a fault tree analysis diagram will be used to gain an overview of the entire path of failure from root cause to the top event (i.e., the swing’s detachment) and to identify interactions between misuse, material decay and inspection errors.arrow_forwardhi can you please help me in finding the stress intensity factor using a k-calcluator for the scenario attathced in the images.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





