A moving sidewalk in an airport moves people between gates. It takes Jason's 9 -year -old daughter Josie 40 sec to travel 200 ft walking with the sidewalk. It takes her 30 sec to walk 90 ft against the moving sidewalk (in the opposite direction).Find the speed of the sidewalk and find Josie's speed walking on non-moving ground. (See Example 8)
A moving sidewalk in an airport moves people between gates. It takes Jason's 9 -year -old daughter Josie 40 sec to travel 200 ft walking with the sidewalk. It takes her 30 sec to walk 90 ft against the moving sidewalk (in the opposite direction).Find the speed of the sidewalk and find Josie's speed walking on non-moving ground. (See Example 8)
A moving sidewalk in an airport moves people between gates. It takes Jason's
9
-year
-old daughter Josie
40
sec
to travel
200
ft
walking with the sidewalk. It takes her
30
sec
to walk
90
ft
against the moving sidewalk (in the opposite direction).Find the speed of the sidewalk and find Josie's speed walking on non-moving ground. (See Example 8)
3.
Consider the sequences of functions f₁: [-π, π] → R,
sin(n²x)
An(2)
n
f pointwise as
(i) Find a function ƒ : [-T,π] → R such that fn
n∞. Further, show that fn →f uniformly on [-π,π] as n → ∞.
[20 Marks]
(ii) Does the sequence of derivatives f(x) has a pointwise limit on [-7, 7]?
Justify your answer.
[10 Marks]
1. (i) Give the definition of a metric on a set X.
[5 Marks]
(ii) Let X = {a, b, c} and let a function d : XxX → [0, ∞) be defined
as d(a, a) = d(b,b) = d(c, c) 0, d(a, c) = d(c, a) 1, d(a, b) = d(b, a) = 4,
d(b, c) = d(c,b) = 2. Decide whether d is a metric on X. Justify your answer.
=
(iii) Consider a metric space (R, d.), where
=
[10 Marks]
0
if x = y,
d* (x, y)
5
if xy.
In the metric space (R, d*), describe:
(a) open ball B2(0) of radius 2 centred at 0;
(b) closed ball B5(0) of radius 5 centred at 0;
(c) sphere S10 (0) of radius 10 centred at 0.
[5 Marks]
[5 Marks]
[5 Marks]
(c) sphere S10 (0) of radius 10 centred at 0.
[5 Marks]
2. Let C([a, b]) be the metric space of continuous functions on the interval
[a, b] with the metric
doo (f,g)
=
max f(x)g(x)|.
xЄ[a,b]
= 1x. Find:
Let f(x) = 1 - x² and g(x):
(i) do(f, g) in C'([0, 1]);
(ii) do(f,g) in C([−1, 1]).
[20 Marks]
[20 Marks]
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Correlation Vs Regression: Difference Between them with definition & Comparison Chart; Author: Key Differences;https://www.youtube.com/watch?v=Ou2QGSJVd0U;License: Standard YouTube License, CC-BY
Correlation and Regression: Concepts with Illustrative examples; Author: LEARN & APPLY : Lean and Six Sigma;https://www.youtube.com/watch?v=xTpHD5WLuoA;License: Standard YouTube License, CC-BY