Concept explainers
In a typical automobile engine, a gasoline vapor-air mixture is compressed and ignited in the cylinders of the engine. This results in a combustion reaction that produces mainly carbon dioxide and water vapor. For simplicity, assume that the fuel is C8H18 and has a density of 0.760 g/mL.
- (a) Calculate the partial pressures of N2 and 02 in the air before it goes into the cylinder; assume the atmospheric pressure is 734 mmHg.
- (b) Consider the case where the air, without any fuel added, is compressed in the cylinder to seven times atmospheric pressure, the compression ratio of many modem automobile engines. Calculate the partial pressures of N2 and O2 at this pressure.
- (c) Now consider the case where 0.050 mL gasoline is added to the air in the cylinder just before compression and completely vaporized. Assume that the volume of the cylinder is 485 mL and the temperature is 150°C. Calculate the partial pressure of the gasoline vapor.
- (d) Calculate the amount (mol) of oxygen required to bum the gasoline in part (c) completely to CO2 and H2O.
- (e) The combustion reaction in the cylinder creates temperatures in excess of 1200K. Due to the high temperature, some of the nitrogen and oxygen in the air reacts to form nitrogen monoxide. If 10% of the nitrogen is converted to NO, calculate the mass (g) of NO produced by this combustion.
- (f) Hot-rod cars use another oxide of nitrogen, dinitrogen monoxide, to create an extra burst in power. When such a power boost is needed, dinitrogen monoxide gas is injected into the cylinders where it reacts with oxygen to form NO. Calculate the mass of dinitrogen monoxide that would have to be injected to form the same quantity of NO as produced in part (e). Assume that sufficient oxygen is present to do so.
(a)
Interpretation:
Partial pressure of
Concept Introduction:
Mole fraction: Quantity which defines the number of moles of a substance in a mixture divided by the total number of moles of all substances present.
Partial pressure of a gas in the mixture of gases is the product of mole fraction of the gas and the total pressure.
Answer to Problem ISP
Partial pressure of
Partial pressure of
Explanation of Solution
Percentage by volume of
Percentage by volume of
Mole fraction of
Partial pressure of
Partial pressure of
(b)
Interpretation:
Partial pressure of
Answer to Problem ISP
Partial pressure of
Partial pressure of
Explanation of Solution
At
According to Boyle’s law, pressure and volume is inversely proportional to each other at constant temperature and number of molecules.
Hence, when the volume of gas is compressed by seven times, then pressure of the sample is increased by seven times.
Therefore,
Partial pressure of
(c)
Interpretation:
Partial pressure of the gasoline vapor has to be calculated.
Concept Introduction:
Ideal gas Equation:
Any gas is described by using four terms namely pressure, volume, temperature and the amount of gas. Thus combining three laws namely Boyle’s, Charles’s Law and Avogadro’s Hypothesis the following equation could be obtained. It is referred as ideal gas equation.
Here,
n is the moles of gas
P is the Pressure
V is the Volume
T is the Temperature
R is the gas constant
Answer to Problem ISP
Partial pressure of the gasoline vapor is
Explanation of Solution
Given information is shown below,
Number of moles of gasoline
Partial pressure of the gasoline vapor can be calculated using Ideal Gas equation as follows,
(d)
Interpretation:
Number of moles of
Answer to Problem ISP
Number of moles of
Explanation of Solution
Balanced equation for the combustion of gasoline is given below,
Number of moles of gasoline
From the balanced equation, it is clear that
(e)
Interpretation:
Mass of
Concept Introduction:
Refer to (c)
Answer to Problem ISP
Mass of
Explanation of Solution
Given information is shown below,
Number of moles of
The reaction that shows the formation of
From the balanced equation, it is clear that
Mass of
(f)
Interpretation:
Mass of
Answer to Problem ISP
Mass of
Explanation of Solution
The reaction that shows the formation of
Number of moles of
From the balanced equation, it is clear that
Want to see more full solutions like this?
Chapter 8 Solutions
Chemistry: The Molecular Science
- How does hydraulic fracturing differ from previously used techniques for the recovery of natural gas from the earth?arrow_forwardYou have two pressure-proof steel cylinders of equal volume, one containing 1.0 kg of CO and the other containing 1.0 kg of acetylene, C2H2. (a) In which cylinder is the pressure greater at 25 C? (b) Which cylinder contains the greater number of molecules?arrow_forwardLiquid oxygen was first prepared by heating potassium chlorate, KClO3, in a closed vessel to obtain oxygen at high pressure. The oxygen was cooled until it liquefied. 2KClO3(s)2KCl(s)+3O2(g) If 171 g of potassium chlorate reacts in a 2.70-L vessel, which was initially evacuated, what pressure of oxygen will be attained when the temperature is finally cooled to 25C? Use the preceding chemical equation and ignore the volume of solid product.arrow_forward
- Raoul Pictet, the Swiss physicist who first liquefied oxygen, attempted to liquefy hydrogen. He heated potassium formate, KCHO2, with KOH in a closed 2.50-Lvessel. KCHO2(s)+KOH(s)K2CO3(s)+H2(g) If 75.0 g of potassium formate reacts in a 2.50-L vessel, which was initially evacuated, what pressure of hydrogen will be attained when the temperature is finally cooled to 25C? Use the preceding chemical equation and ignore the volume of solid product.arrow_forward93 The complete combustion of octane can be used as a model for the burning of gasoline: 2C8H18+25O216CO2+18H2O Assuming that this equation provides a reasonable model of the actual combustion process, what volume of air at 1.0 atm and 25°C must be taken into an engine to burn 1 gallon of gasoline? (The partial pressure of oxygen in air is 0.21 atm and the density of liquid octane is 0.70 g/mL.)arrow_forward97 Homes in rural areas where natural gas service is not available often rely on propane to fuel kitchen ranges. The propane is stored as a liquid, and the gas to be burned is produced as the liquid evaporates. Suppose an architect has hired you to consult on the choice of a propane tank for such a new home. The propane gas consumed in 1.0 hour by a typical range burner at high power would occupy roughly 165 L at 25°C and 1.0 atm, and the range chosen by the client will have six burners. If the tank under consideration holds 500.0 gallons of liquid propane, what is the minimum number of hours it would take for the range to consume an entire tankful of propane? The density of liquid propane is 0.5077 kg/L.arrow_forward
- You have a gas, one of the three known phosphorus-fluorine compounds (PF3, PF3, and P2F4). To find out which, you have decided to measure its molar mass. (a) First, yon determine that the density of the gas is 5.60 g/L at a pressure of 0.971 atm and a temperature of 18.2 C. Calculate the molar mass and identify the compound. (b) To check the results from part (a), you decide to measure the molar mass based on the relative rales of effusion of the unknown gas and CO2. You find that CO2 effuses at a rate of 0.050 mol/min, whereas the unknown phosphorus fluoride effuses at a rate of 0.028 mol/min. Calculate the molar mass of the unknown gas based on these results.arrow_forwardA flask is first evacuated so that it contains no gas at all. Then, 2.2 g of CO2 is introduced into the flask. On warming to 22 C, the gas exerts a pressure of 318 mm Hg. What is the volume of the flask?arrow_forwardGiven that a sample of air is made up of nitrogen, oxygen, and argon in the mole fractions 0.78 N2, 0.21 O2, and 0.010 Ar, what is the density of air at standard temperature and pressure?arrow_forward
- You have an equimolar mixture of the gases SO2 and O2, along with some He, in a container fitted with a piston. The density of this mixture at STP is 1.924 g/L. Assume ideal behavior and constant temperature and pressure. a. What is the mole fraction of He in the original mixture? b. The SO2 and O2 react to completion to form SO3. What is the density of the gas mixture after the reaction is complete?arrow_forwardButane gas, C4H10, is sold to campers as bottled fuel. Its density at 25C and 1.00 atm is 2.38 g/L. What volume of butane gas at 25C and 1.00 atm is required to heat one gallon of water (d=1.00g/mL) from 25C to 98C ? The reaction for the combustion of butane (H f =125.6kJ/mol) is C4H10(g)+132 O2(g)4CO2(g)+5H2O(g)arrow_forwardIn the Mthode Champenoise, grape juice is fermented in a wine bottle to produce sparkling wine. The reaction is C6H12O6(aq)2C2H5OH(aq)+2CO2(g) Fermentation of 750. mL grape juice (density = 1.0 g/cm3) is allowed to take place in a bottle with a total volume of 825 mL until 12% by volume is ethanol (C2H5OH). Assuming that the CO2 is insoluble in H2O (actually, a wrong assumption), what would be the pressure of CO2 inside the wine bottle at 25C? (The density of ethanol is 0.79 g/cm3.)arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningIntroduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning