Concept explainers
(a)
Interpretation:
Partial pressure of
Concept Introduction:
Ideal gas Equation:
Any gas is described by using four terms namely pressure, volume, temperature and the amount of gas. Thus combining three laws namely Boyle’s, Charles’s Law and Avogadro’s Hypothesis the following equation could be obtained. It is referred as ideal gas equation.
Here,
n is the moles of gas
P is the Pressure
V is the Volume
T is the Temperature
R is the gas constant
Molar mass can be determined using the given equation,
Here, n is the number of moles.
M is the Molar mass.
m is the Mass.
(a)
Answer to Problem 94QRT
Partial pressure of
Partial pressure of
Explanation of Solution
Reaction is shown below,
Number of moles of
Substitute the values to obtain the number of moles of
Partial pressure of
Partial pressure of
Partial pressure of
(b)
Interpretation:
Total pressure before the reaction has to be determined.
Concept Introduction:
Dalton’s law of partial pressure:
According to this law, the total pressure exerted by each gas in a mixture is equal to the sum of the individual partial pressure of the gases.
(b)
Answer to Problem 94QRT
Total pressure before the reaction is
Explanation of Solution
Partial pressure of
Partial pressure of
According to Dalton’s law, the total pressure exerted by each gas in a mixture is equal to the sum of the individual partial pressure of the gases at constant temperature and volume.
Therefore, total pressure before the reaction is determined as follows,
(c)
Interpretation:
Total pressure after the reaction has to be determined.
(c)
Answer to Problem 94QRT
Total pressure after the reaction is
Explanation of Solution
Total pressure before the reaction is
Number of moles of gas reactants and the number of moles of gaseous products are equal. Hence, the total pressure after and before the reaction will be same.
Total pressure after the reaction is
(d)
Interpretation:
The reactant that remains in the flask after the reaction has to be determined. Also the amount of remaining reactant has to be calculated.
Concept Introduction:
(d)
Answer to Problem 94QRT
Explanation of Solution
Reaction is shown below,
Number of moles of
Substitute the values to obtain the number of moles of
From the balanced equation, it is clear that
Here,
(e)
Interpretation:
Partial pressure of each gas after the reaction has to be determined.
(e)
Answer to Problem 94QRT
Partial pressure of
Partial pressure of
Explanation of Solution
Reaction is shown below,
From the balanced equation, it is clear that
Therefore, partial pressure of
In the given reaction,
Total pressure after the reaction is
Therefore, partial pressure of
(f)
Interpretation:
Pressure inside the flask if the temperature is raised to
(f)
Answer to Problem 94QRT
Pressure inside the flask is
Explanation of Solution
Given information is shown below,
Pressure inside the flask can be calculated using combined
Here, the volume of the tire is constant and equation becomes,
Therefore, pressure inside the flask can be determined as shown below,
Want to see more full solutions like this?
Chapter 8 Solutions
Chemistry: The Molecular Science
- Xenon and fluorine will react to form binary compounds when a mixture of these two gases is heated to 400C in a nickel reaction vessel. A 100.0-mL nickel container is filled with xenon and fluorine, giving partial pressures of 1.24 atm and 10.10 atm, respectively, at a temperature of 25C. The reaction vessel is heated to 400C to cause a reaction to occur and then cooled to a temperature at which F2 is a gas and the xenon fluoride compound produced is a nonvolatile solid. The remaining F2 gas is transferred to another 100.0-mL nickel container, where the pressure of F2 at 25C is 7.62 atm. Assuming all of the xenon has reacted, what is the formula of the product?arrow_forwardConsider the following reaction at 75C: 3R(s)+2Q(g)A(g)+5B(l)K=9.4 A 10.0-L sample contains 0.30 mol of R and Q and 0.50 mol of A and B. In which direction will the reaction proceed?arrow_forward105 The decomposition of mercury(II) thiocyanate produces an odd brown snake-like mass that is so unusual the process was once used in fireworks displays. There are actually several reactions that take place when the solid Hg(SCN)2 is ignited: 2Hg(SCN)2(s)2HgS(s)+CS2(s)+C3N4(s)CS2(s)+3O2(g)CO2(g)+2SO2(g)2C3N4(s)3(CN)2(g)+N2(g)HgS(s)+O2(g)Hg(l)+SO2(g) A 42.4-g sample of Hg(SCN)2 is placed into a 2.4-L vessel at 21°C. The vessel also contains air at a pressure of 758 torr. The container is sealed and the mixture is ignited, causing the reaction sequence above to occur. Once the reaction is complete, the container is cooled back to the original temperature of 21°C. (a) Without doing numerical calculations, predict whether the final pressure in the vessel will be greater than, less than, or equal to the initial pressure. Explain your answer. (b) Calculate the final pressure and compare your result with your prediction. (Assume that the mole fraction of O2 in air is 0.21.)arrow_forward
- You have two pressure-proof steel cylinders of equal volume, one containing 1.0 kg of CO and the other containing 1.0 kg of acetylene, C2H2. (a) In which cylinder is the pressure greater at 25 C? (b) Which cylinder contains the greater number of molecules?arrow_forwardButane gas, C4H10, is sold to campers as bottled fuel. Its density at 25C and 1.00 atm is 2.38 g/L. What volume of butane gas at 25C and 1.00 atm is required to heat one gallon of water (d=1.00g/mL) from 25C to 98C ? The reaction for the combustion of butane (H f =125.6kJ/mol) is C4H10(g)+132 O2(g)4CO2(g)+5H2O(g)arrow_forwardWhat possible uses exist for the natural gas liquids that are removed from natural gas during its processing?arrow_forward
- Which of the following quantities can be taken to be independent of temperature? independent of pressure? (a) H for a reaction (b) S for a reaction (c) G for a reaction (d) S for a substancearrow_forwardCarbon monoxide, CO, and oxygen, O2, react according to 2CO(g)+O2(g)2CO2(g) Assuming that the reaction takes place and goes to completion, determine what substances remain and what their partial pressures are after the valve is opened in the apparatus represented in the accompanying figure. Also assume that the temperature is fixed at 300 K.arrow_forwardGiven that a sample of air is made up of nitrogen, oxygen, and argon in the mole fractions 0.78 N2, 0.21 O2, and 0.010 Ar, what is the density of air at standard temperature and pressure?arrow_forward
- Calculate H when a 38-g sample of glucose, C6H12O6(s), burns in excess O2(g) to form CO2(g) and H2O() in a reaction at constant pressure and 298.15 K.arrow_forward93 The complete combustion of octane can be used as a model for the burning of gasoline: 2C8H18+25O216CO2+18H2O Assuming that this equation provides a reasonable model of the actual combustion process, what volume of air at 1.0 atm and 25°C must be taken into an engine to burn 1 gallon of gasoline? (The partial pressure of oxygen in air is 0.21 atm and the density of liquid octane is 0.70 g/mL.)arrow_forward95 Some engineering designs call for the use of compressed air for underground work. If water containing iron(II) ions is present, oxygen in the compressed air may react according to the following unbalanced net ionic equation: Fe2++H++O2Fe3++H2O (a) Write the balanced net ionic equation. Remember that the amounts of each substance and the charges must balance. (b) Assume all of the oxygen from 650 L of compressed air at 15°C and 6.5 atm is lost by this reaction. What mass of water would be produced? (The mole fraction of oxygen in air is about 0.21.) (c) What will be the final pressure after the loss of the oxygen?arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningIntroduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage Learning