
(a)
The velocity of the center of mass.
(a)

Answer to Problem 93P
The speed of center of mass is
Explanation of Solution
Given:
The mass of first block is
The mass of second block is
The speed of first block is
The speed of second block is
Formula used:
The expression for velocity of center of mass is given by,
Calculation:
The velocity of center of mass is calculated as,
Conclusion:
Therefore, the speed of center of mass is
(b)
The velocity of each block in center of mass reference frame.
(b)

Answer to Problem 93P
The velocity of first block is
Explanation of Solution
Formula used:
The expression for velocity of first block is given by,
The expression for velocity of second block is given by,
Calculation:
The expression for velocity of first block is calculated as,
The expression for velocity of second block is calculated as,
Conclusion:
Therefore, the velocity of first block is
(c)
The velocity of each block in center of mass reference frame after collision.
(c)

Answer to Problem 93P
The velocity of first block is
Explanation of Solution
Formula used:
The expression for velocity of first block is given by,
The expression for velocity of second block is given by,
Calculation:
The expression for velocity of first block is calculated as,
The expression for velocity of second block is calculated as,
Conclusion:
Therefore, the velocity of first block is
(d)
The velocity in original frame.
(d)

Answer to Problem 93P
The velocity of first block is
Explanation of Solution
Formula used:
The expression for velocity of first block is given by,
The expression for velocity of second block is given by,
Calculation:
The expression for velocity of first block is calculated as,
The expression for velocity of second block is calculated as,
Conclusion:
Therefore, the velocity of first block is
(e)
The initial and final kinetic energies.
(e)

Answer to Problem 93P
The initial kinetic energy is
Explanation of Solution
Formula used:
The expression for initial kinetic energy is given by,
The expression for final kinetic energy is given by,
Calculation:
The initial kinetic energy is calculated as,
The final kinetic energy is calculated as,
Conclusion:
Therefore, the initial kinetic energy is
Want to see more full solutions like this?
Chapter 8 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- Two conductors having net charges of +14.0 µC and -14.0 µC have a potential difference of 14.0 V between them. (a) Determine the capacitance of the system. F (b) What is the potential difference between the two conductors if the charges on each are increased to +196.0 µC and -196.0 µC? Varrow_forwardPlease see the attached image and answer the set of questions with proof.arrow_forwardHow, Please type the whole transcript correctly using comma and periods as needed. I have uploaded the picture of a video on YouTube. Thanks,arrow_forward
- A spectra is a graph that has amplitude on the Y-axis and frequency on the X-axis. A harmonic spectra simply draws a vertical line at each frequency that a harmonic would be produced. The height of the line indicates the amplitude at which that harmonic would be produced. If the Fo of a sound is 125 Hz, please sketch a spectra (amplitude on the Y axis, frequency on the X axis) of the harmonic series up to the 4th harmonic. Include actual values on Y and X axis.arrow_forwardSketch a sign wave depicting 3 seconds of wave activity for a 5 Hz tone.arrow_forwardSketch a sine wave depicting 3 seconds of wave activity for a 5 Hz tone.arrow_forward
- The drawing shows two long, straight wires that are suspended from the ceiling. The mass per unit length of each wire is 0.050 kg/m. Each of the four strings suspending the wires has a length of 1.2 m. When the wires carry identical currents in opposite directions, the angle between the strings holding the two wires is 20°. (a) Draw the free-body diagram showing the forces that act on the right wire with respect to the x axis. Account for each of the strings separately. (b) What is the current in each wire? 1.2 m 20° I -20° 1.2 marrow_forwardplease solve thisarrow_forwardplease solve everything in detailarrow_forward
- 6). What is the magnitude of the potential difference across the 20-02 resistor? 10 Ω 11 V - -Imm 20 Ω 10 Ω 5.00 10 Ω a. 3.2 V b. 7.8 V C. 11 V d. 5.0 V e. 8.6 Varrow_forward2). How much energy is stored in the 50-μF capacitor when Va - V₁ = 22V? 25 µF b 25 µF 50 µFarrow_forward9). A series RC circuit has a time constant of 1.0 s. The battery has a voltage of 50 V and the maximum current just after closing the switch is 500 mA. The capacitor is initially uncharged. What is the charge on the capacitor 2.0 s after the switch is closed? R 50 V a. 0.43 C b. 0 66 C c. 0.86 C d. 0.99 C Carrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





