(a)
The total Kinetic Energy of the two blocks.
(a)
Answer to Problem 41P
The total kinetic energy of the two blocks is
Explanation of Solution
Given:
The mass of block 1 is
The velocity of the block 1 in positive x direction is
The mass of block 2 is
The velocity of block 2 in negative x direction
Formula used:
The expression for kinetic energy is given as,
Here,
Calculation:
The total Kinetic energy of the two blocks can be calculated as,
Further solving the above equation,
Conclusion:
Therefore, the total kinetic energy of the two blocks is
(b)
The velocity of centre of mass of the two block system.
(b)
Answer to Problem 41P
The velocity of centre of mass of the two block system is
Explanation of Solution
Given:
The mass of block 1 is
The velocity of the block 1 in positive x direction is
The mass of block 2 is
The velocity of block 2 in negative x direction
Formula used:
The expression for momentum is given as,
Calculation:
The momentum of the system remains conserved and it can be calculated as,
Conclusion:
Therefore, the velocity of centre of mass of the two block system is
(c)
The velocity of each block relative to the centre of mass.
(c)
Answer to Problem 41P
The velocity of the block 1 relative to the centre of mass is
Explanation of Solution
Given:
The velocity of the block 1 in positive x direction is
The velocity of block 2 in negative x direction
Formula used:
The expression for the velocity with respect to centre of mass is given as,
Here,
Calculation:
The velocity of block 1 with respect to the centre of mass can be calculated as,
The velocity of block 2 with respect to the centre of mass can be calculated as,
Conclusion:
Therefore, the velocity of the block 1 relative to the centre of mass is
(d)
The kinetic energy of the blocks relative to the centre of mass.
(d)
Answer to Problem 41P
The kinetic energy of the blocks relative to the centre of mass is
Explanation of Solution
Given:
The velocity of the block 1 in positive x direction is
The velocity of block 2 in negative x direction
Formula used:
The expression for kinetic energy is given by,
Calculation:
The total Kinetic energy of the two blocks can be calculated as,
Further solving the above equation,
Conclusion:
Therefore, the kinetic energy of the blocks relative to the centre of mass is
(e)
The proof that the kinetic energy in part (a) is greater than the kinetic energy in part (d) by an amount equal to the kinetic energy with respect to centre of mass.
(e)
Answer to Problem 41P
The kinetic energy in part (a) is greater than the kinetic energy in part (d) by an amount equal to the kinetic energy with respect to centre of mass.
Explanation of Solution
Given:
The mass of block 1 is
The velocity of the block 1 in positive x direction is
The mass of block 2 is
The velocity of block 2 in negative x direction
Formula used:
The expression for kinetic energy is given by,
Calculation:
The total Kinetic energy of the two blocks can be calculated as,
The above result is equal to
Conclusion:
Therefore, the kinetic energy in part (a) is greater than the kinetic energy in part (d) by an amount equal to the kinetic energy with respect to centre of mass.
Want to see more full solutions like this?
Chapter 8 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- Two projectiles of mass m1 and m2 , are fired at the same speed but in opposite directions from two launch sites separated by a distance D. They both reach the same spot in their highest point and strike there. As a result of the impact they stick together and move as a single body afterwards. Find the place they will land.arrow_forwardIn an elastic collision, a 400-kg bumper car collides directly from behind with a second, identical bumper car that is traveling in the same direction. The initial speed of the leading bumper car is 5.60 m/s and that of the trailing car is 6.00 m/s. Assuming that the mass of the drivers is much, much less than that of the bumper cars, what are their final speeds?arrow_forwardA car of mass 1 560 kg traveling east and a truck of equal mass traveling north collide and become entangled, moving as a unit at 15.0 m/s and 60.0 north of east. Find the speed of (a) the car, and (b) the truck prior to the collision. (See Section 6.4.)arrow_forward
- Check Your Understanding Even if there were some friction on the ice, it is still possible to use conservation of momentum to solve this problem, but you would need to imposed an additional condition on the problem. What is that additional condition?arrow_forwardTwo particles of masses m1 and m2 , move uniformly in different circles of radii R1 and R2 R2 about origin in the x, y-plane. The x- and y-coordinates of the center of mass and that of particle 1 are given as follows (where length is in meters and tin seconds): x1(t)=4cos(2t) , y1(t)=4sin(2t) and: xCM(t)=4cos(2t) , yCM(t)=3sin(2t) . a. Find the radius of the circle in which particle 1 moves. b. Find the x- and y-coordinates of particle 2 and the radius of the circle this particle moves.arrow_forwardYou hold a slingshot at arms length, pull the light elastic band back to your chin, and release it to launch a pebble horizontally with speed 200 cm/s. With the same procedure, you fire a bean with speed 600 cm/s. What is the ratio of the mass of the bean to the mass of the pebble? (a) 19 (b) 13 (c) 1 (d) 3 (e) 9arrow_forward
- (a) Does the center of mass of a rocket in free space accelerate? Explain. (b) Can the speed of a rocket exceed the exhaust speed of the fuel? Explain.arrow_forwardA car of mass 750 kg traveling at a velocity of 27 m/s in the positive x-direction crashes into the rear of a truck of mass 1 500 kg that is at rest and in neutral at an intersection. If the collision is inelastic and the truck moves forward at 15.0 m/s, what is the velocity of the car after the collision? (See Section 6.3.)arrow_forwardA water molecule consists of an oxygen atom with two hydrogen atoms bound to it (Fig. P8.36). The angle between the two bonds is 106. If the bonds are 0.100 nm long, where is the center of mass of the molecule? Figure P8.36arrow_forward
- A head-on, elastic collision occurs between two billiard balls of equal mass. If a red ball is traveling to the right with speed v and a blue ball is traveling to the left with speed 3v before the collision, what statement is true concerning their velocities subsequent to the collision? Neglect any effects of spin. (a) The red ball travels to the left with speed v, while the blue ball travels to the right with speed 3v. (b) The red ball travels to the left with speed v, while the blue ball continues to move to the left with a speed 2v. (c) The red ball travels to the left with speed 3v, while the blue ball travels to the right with speed v. (d) Their final velocities cannot be determined because momentum is not conserved in the collision. (e) The velocities cannot be determined without knowing the mass of each ball.arrow_forwardWhat is the average momentum of an avalanche that moves a 40-cm-thick layer of snow over an area of 100 m by 500 m over a distance of 1 km down a hill in 5.5 s? Assume a density of 350kg/m3 for the snow.arrow_forwardA tennis ball of mass mt is held just above a basketball of mass mb, as shown in Figure P8.22. With their centers vertically aligned, both are released from rest at the same moment so that the bottom of the basketball falls freely through a height h and strikes the floor. Assume an elastic collision with the ground instantaneously reverses the velocity of the basketball while the tennis ball is still moving down because the balls have separated a bit while falling. Next, the two balls meet in an elastic collision. (a) To what height does the tennis ball rebound? (b) How do you account for the height in (a) being larger than h? Does that seem like a violation of conservation of energy? Figure P8.22arrow_forward
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning