(a)
The total kinetic energy of the two blocks.
(a)
Answer to Problem 42P
The total kinetic energy of the two blocks is
Explanation of Solution
Given:
The mass of block 1 is
The velocity of the block 1 in positive x direction is
The mass of block 2 is
The velocity of block 2 in positive x direction is
Formula used:
The expression for kinetic energy is given by,
Here,
Calculation:
The total Kinetic energy of the two blocks can be calculated as,
Further solving the above equation,
Conclusion:
Therefore, the total kinetic energy of the two blocks is
(b)
The velocity of centre of mass of the two block system.
(b)
Answer to Problem 42P
The velocity of centre of mass of the two block system is
Explanation of Solution
Given:
The mass of block 1 is
The velocity of the block 1 in positive x direction is
The mass of block 2 is
The velocity of block 2 in positive x direction is
Formula used:
The expression for momentum is given by,
Calculation:
Since, the momentum of the system remains conserved and can be calculated as,
Conclusion:
Therefore, the velocity of centre of mass of the two block system is
(c)
The velocity of each block relative to the centre of mass.
(c)
Answer to Problem 42P
The velocity of the block 1 relative to the centre of mass is
Explanation of Solution
Given:
The velocity of the block 1 in positive x direction is
The velocity of block 2 in positive x direction
Formula used:
The expression for the velocity with respect to centre of mass is given as,
Here,
Calculation:
The velocity of block 1 with respect to the centre of mass can be calculated as,
The velocity of block 2 with respect to the centre of mass can be calculated as,
Conclusion:
Therefore, The velocity of the block 1 relative to the centre of mass is
(d)
The kinetic energy of the blocks relative to the centre of mass.
(d)
Answer to Problem 42P
The kinetic energy of the blocks relative to the centre of mass is
Explanation of Solution
Given:
The velocity of block 1 in positive x direction is
The velocity of block 2 in positive x direction is
Formula used:
The expression for kinetic energy is given by,
Calculation:
The total Kinetic energy of the two blocks can be calculated as,
Further solving the above equation,
Conclusion:
Therefore, the kinetic energy of the blocks relative to the centre of mass is
(e)
The proof that the kinetic energy in part (a) is greater than the kinetic energy in part (d) by an amount equal to the kinetic energy with respect to centre of mass.
(e)
Answer to Problem 42P
The kinetic energy in part (a) is greater than the kinetic energy in part (d) by an amount equal to the kinetic energy with respect to centre of mass.
Explanation of Solution
Given:
The mass of block 1 is
The velocity of the block 1 in positive x direction is
The mass of block 2 is
The velocity of block 2 in negative x direction
Formula used:
The expression for kinetic energy is given by,
Calculation:
The total Kinetic energy of the two blocks can be calculated as,
The above result is equal to
Conclusion:
Therefore, the kinetic energy in part (a) is greater than the kinetic energy in part (d) by an amount equal to the kinetic energy with respect to centre of mass.
Want to see more full solutions like this?
Chapter 8 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- A sky diver of mass 90 kg (with suit and gear) is falling at terminal speed. What is the upward force of air drag, and how do you know?arrow_forwardA car is traveling at top speed on the Bonneville salt flats while attempting a land speed record. The tires exert 25 kN of force in the backward direction on the ground. Why backwards? How large are the forces resisting the forward motion of the car, and why?arrow_forwardA bee strikes a windshield of a car on the freeway and gets crushed. What can you conclude about the force on the bee versus the force on the windshield, and on what principle is this based?arrow_forward
- Please help by: Use a free body diagram Show the equations State your assumptions Show your steps Box your final answer Thanks!arrow_forwardBy please don't use Chatgpt will upvote and give handwritten solutionarrow_forwardA collection of electric charges that share a common magnitude q (lower case) has been placed at the corners of a square, and an additional charge with magnitude Q (upper case) is located at the center of that square. The signs of the charges are indicated explicitly such that ∣∣+q∣∣∣∣+Q∣∣=∣∣−q∣∣==∣∣−Q∣∣=qQ Four unique setups of charges are displayed. By moving one of the direction drawings from near the bottom to the bucket beside each of the setups, indicate the direction of the net electric force on the charge with magnitude Q, located near the center, else indicate that the magnitude of the net electric force is zero, if appropriate.arrow_forward
- A number of electric charges has been placed at distinct points along a line with separations as indicated. Two charges share a common magnitude, q (lower case), and another charge has magnitude Q(upper case). The signs of the charges are indicated explicitly such that ∣∣+q∣∣∣∣+Q∣∣=∣∣−q∣∣==∣∣−Q∣∣=qQ Four different configurations of charges are shown. For each, express the net electric force on the charge with magnitude Q (upper case) as F⃗E=FE,xî where the positive x direction is towards the right. By repositioning the figures to the area on the right, rank the configurations from the most negative value to the most positive value of FE,x.arrow_forwardFor each part make sure to include sign to represent direction, with up being positive and down being negative. A ball is thrown vertically upward with a speed of 30.5 m/s. A) How high does it rise? y= B) How long does it take to reach its highest point? t= C) How long does it take the ball return to its starting point after it reaches its highest point? t= D) What is its velocity when it returns to the level from which it started? v=arrow_forwardFour point charges of equal magnitude Q = 55 nC are placed on the corners of a rectangle of sides D1 = 27 cm and D2 = 11cm. The charges on the left side of the rectangle are positive while the charges on the right side of the rectangle are negative. Use a coordinate system where the positive y-direction is up and the positive x-direction is to the right. A. Which of the following represents a free-body diagram for the charge on the lower left hand corner of the rectangle? B. Calculate the horizontal component of the net force, in newtons, on the charge which lies at the lower left corner of the rectangle.Numeric : A numeric value is expected and not an expression.Fx = __________________________________________NC. Calculate the vertical component of the net force, in newtons, on the charge which lies at the lower left corner of the rectangle.Numeric : A numeric value is expected and not an expression.Fy = __________________________________________ND. Calculate the magnitude of the…arrow_forward
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning