In an emergency situation, a person with a broken forearm ties a strap from his hand to clip on his shoulder as in Figure P8.92. His 1.60-kg forearm remains in a horizontal position and the strap makes an angle of θ = 50.0° with the horizontal. Assume the forearm is uniform, has a length of ℓ = 0.320 m, .assume the biceps muscle is relaxed, and ignore the mass and length of the hand. Find (a) the tension in the snap and (b) the components of the reaction force exerted by the humerus on the forearm. Figure P8.92
In an emergency situation, a person with a broken forearm ties a strap from his hand to clip on his shoulder as in Figure P8.92. His 1.60-kg forearm remains in a horizontal position and the strap makes an angle of θ = 50.0° with the horizontal. Assume the forearm is uniform, has a length of ℓ = 0.320 m, .assume the biceps muscle is relaxed, and ignore the mass and length of the hand. Find (a) the tension in the snap and (b) the components of the reaction force exerted by the humerus on the forearm. Figure P8.92
Solution Summary: The author determines the magnitude of tension in the strap.
In an emergency situation, a person with a broken forearm ties a strap from his hand to clip on his shoulder as in Figure P8.92. His 1.60-kg forearm remains in a horizontal position and the strap makes an angle of θ = 50.0° with the horizontal. Assume the forearm is uniform, has a length of ℓ = 0.320 m, .assume the biceps muscle is relaxed, and ignore the mass and length of the hand. Find (a) the tension in the snap and (b) the components of the reaction force exerted by the humerus on the forearm.
The force of the quadriceps (Fq) and force of the patellar tendon (Fp) is identical (i.e., 1000 N each). In the figure below angle in blue is Θ and the in green is half Θ (i.e., Θ/2). A) Calculate the patellar reaction force (i.e., R resultant vector is the sum of the horizontal component of the quadriceps and patellar tendon force) at the following joint angles: you need to provide a diagram showing the vector and its components for each part. a1) Θ = 160 degrees, a2) Θ = 90 degrees. NOTE: USE ONLY TRIGNOMETRIC FUNCTIONS (SIN/TAN/COS, NO LAW OF COSINES, NO COMPLICATED ALGEBRAIC EQUATIONS OR ANYTHING ELSE, ETC. Question A has 2 parts!
The force of the quadriceps (Fq) and force of the patellar tendon (Fp) is identical (i.e., 1000 N each). In the figure below angle in blue is Θ and the in green is half Θ (i.e., Θ/2). A) Calculate the patellar reaction force (i.e., R resultant vector is the sum of the horizontal component of the quadriceps and patellar tendon force) at the following joint angles: you need to provide a diagram showing the vector and its components for each part. a1) Θ = 160 degrees, a2) Θ = 90 degrees. NOTE: USE DO NOT USE LAW OF COSINES, NO COMPLICATED ALGEBRAIC EQUATIONS OR ANYTHING ELSE, ETC. Question A has 2 parts!
No chatgpt pls will upvote
Chapter 8 Solutions
Bundle: College Physics, 11th + WebAssign Printed Access Card for Serway/Vuille's College Physics, 11th Edition, Multi-Term
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.