In a tape recorder, the tape is pulled past the read-write heads at a constant speed by the drive mechanism. Consider the reel from which the tape is pulled: As the tape is pulled off, the radius of the roll of remaining tape decreases, (a) How does the torque on the reel change with time? (b) If the tape mechanism is suddenly turned on so that the tape is quickly pulled with a large force, is the tape more likely to break when pulled from a nearly full reel or from a nearly empty reel?
In a tape recorder, the tape is pulled past the read-write heads at a constant speed by the drive mechanism. Consider the reel from which the tape is pulled: As the tape is pulled off, the radius of the roll of remaining tape decreases, (a) How does the torque on the reel change with time? (b) If the tape mechanism is suddenly turned on so that the tape is quickly pulled with a large force, is the tape more likely to break when pulled from a nearly full reel or from a nearly empty reel?
Solution Summary: The author analyzes how torque decreases with time, and determines when the tape breaks when pulled from nearly full reel.
In a tape recorder, the tape is pulled past the read-write heads at a constant speed by the drive mechanism. Consider the reel from which the tape is pulled: As the tape is pulled off, the radius of the roll of remaining tape decreases, (a) How does the torque on the reel change with time? (b) If the tape mechanism is suddenly turned on so that the tape is quickly pulled with a large force, is the tape more likely to break when pulled from a nearly full reel or from a nearly empty reel?
2.62 Collision. The engineer of a passenger train traveling at
25.0 m/s sights a freight train whose caboose is 200 m ahead on the
same track (Fig. P2.62). The freight train is traveling at 15.0 m/s in the
same direction as the passenger train. The engineer of the passenger
train immediately applies the brakes, causing a constant acceleration
of 0.100 m/s² in a direction opposite to the train's velocity, while the
freight train continues with constant speed. Take x = 0 at the location
of the front of the passenger train when the engineer applies the brakes.
(a) Will the cows nearby witness a collision? (b) If so, where will it take
place? (c) On a single graph, sketch the positions of the front of the pas-
senger train and the back of the freight train.
Can I get help with how to calculate total displacement? The answer is 78.3x-4.8y
2.70 Egg Drop. You are on the Figure P2.70
roof of the physics building, 46.0 m
above the ground (Fig. P2.70). Your
physics professor, who is 1.80 m tall,
is walking alongside the building at
a constant speed of 1.20 m/s. If you
wish to drop an egg on your profes-
sor's head, where should the profes-
sor be when you release the egg?
Assume that the egg is in free fall.
2.71 CALC The acceleration
of a particle is given by ax(t) =
-2.00 m/s² +(3.00 m/s³)t. (a)
Find the initial velocity Vox such that
v = 1.20 m/s
1.80 m
46.0 m
Chapter 8 Solutions
Bundle: College Physics, 11th + WebAssign Printed Access Card for Serway/Vuille's College Physics, 11th Edition, Multi-Term
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.