The Speed of
Answer to Problem 89P
The speed of
Explanation of Solution
Given:
The mass of ball 1 is
The mass of ball 2 is
The speed of ball 1 before collision is
The speed of ball 2 before collision is
The speed of ball 2 after collision is
The direction of ball 1 after collision from incident direction is
Formula Used:
The expression for conservation of momentum is X-direction is given by,
The expression for conservation of momentum is Y-direction is given by,
The expression for kinetic energy after collision is,
The expression for kinetic energy before collision is,
Calculation:
The expression for conservation of momentum is X-direction is calculated as,
The expression for conservation of momentum is Y-direction is calculated as,
Square Equation (1) and (2) and add them
Further simplify the above,
Further simplify the above,
This implies,
So,
The value of total kinetic energy ffter collision when
The value of total kinetic energy after collision when
The value of total kinetic energy before collision is calculated as,
When
From Equation (2),
Conclusion:
Therefore, the speed of
Want to see more full solutions like this?
Chapter 8 Solutions
Physics for Scientists and Engineers
- a man of mass m1 = 70.0 kg is skating at v1 = 8.00 m/s behind his wife of mass m2 = 50.0 kg, who is skating at v2 = 4.00 m/s. Instead of passing her, he inadvertently collides with her. He grabs her around the waist, and they maintain their balance. (a) Sketch the problem with before-and-after diagrams, representing the skaters as blocks. (b) Is the collision best described as elastic, inelastic, or perfectly inelastic? Why? (c) Write the general equation for conservation of momentum in terms of m1, v1, m2, v2, and final velocity vf. (d) Solve the momentum equation for vf. (e) Substitute values, obtaining the numerical value for vf, their speed after the collision.arrow_forwardA 100-g firecracker is launched vertically into the air and explodes into two pieces at the peak of its trajectory. If a 72-g piece is projected horizontally to the left at 20 m/s, what is the speed and direction of the other piece?arrow_forwardA 5.50-kg bowling ball moving at 9.00 m/s collides with a 0.850-kg bowling pin, which is scattered at an angle to the initial direction of the bowling ball and with a speed of 15.0 m/s. a. Calculate the final velocity (magnitude and direction) of the bowling ball. b. Is the collision elastic?arrow_forward
- A head-on, elastic collision occurs between two billiard balls of equal mass. If a red ball is traveling to the right with speed v and a blue ball is traveling to the left with speed 3v before the collision, what statement is true concerning their velocities subsequent to the collision? Neglect any effects of spin. (a) The red ball travels to the left with speed v, while the blue ball travels to the right with speed 3v. (b) The red ball travels to the left with speed v, while the blue ball continues to move to the left with a speed 2v. (c) The red ball travels to the left with speed 3v, while the blue ball travels to the right with speed v. (d) Their final velocities cannot be determined because momentum is not conserved in the collision. (e) The velocities cannot be determined without knowing the mass of each ball.arrow_forwardA 60-kg soccer player jumps vertically upwards and heads the 0.45-kg ball as it is descending vertically with a speed of 25 m/s. (a) If the player was moving upward with a speed of 4.0 m/s just before impact, what will be the speed of the ball immediately after the collision if the ball rebounds vertically upwards and the collision is elastic? (b) If the ball is in contact with the players head for 20 ms, what is the average acceleration of the ball? (Note that the force of gravity may be ignored during the brief collision time.)arrow_forwardStarting with equations m1v1=m1v1cos1+m2v2cos2 and 0=m1v1cos1+m2v2sin2 for conservation of momentum in the x- and y -directions and assuming that one object is originally stationary, prove that for an elastic collision of two objects of equal masses, 12mv12=12mv22+mv1v2cos(12) as discussed in the text.arrow_forward
- (a) What is the momentum of a garbage truck that is 1.20104 kg and is moving at 10.0 m/s ? (b) At what speed would an 8.00-kg trash can have the same momentum as the truck?arrow_forwardA tennis ball of mass 57.0 g is held just above a basketball of mass 590 g. With their centers vertically aligned, both balls are released from rest at the same time, falling through a distance of 1.20 m, as shown in Figure P6.45. (a) Find the magnitude of the basketballs velocity the instant before the basketball reaches the ground. (b) Assume that an elastic collision with the ground instantaneously reverses the velocity of the basketball so that it collides with the tennis ball just above it. To what height does the tennis ball rebound? Figure P6.45arrow_forwardAn object of mass 3.00 kg, moving with an initial velocity of 5.00im/s, collides with and sticks to an object of mass 2.00 kg with an initial velocity of 3.00jm/s. Find the final velocity of the composite object.arrow_forward
- A projectile of mass 2.0 kg is fired in the air at an angle of 40.0 to the horizon at a speed of 50.0 m/s. At the highest point in its flight, the projectile breaks into three parts of mass 1.0 kg, 0.7 kg, and 0.3 kg. The 1.0-kg part falls straight down after breakup with an initial speed of 10.0 m/s, the 0.7-kg part moves in the original forward direction, and the 0.3-kg part goes straight up. Launch a. Find the speeds of the 0.3-kg and 0.7-kg pieces immediately after the break-up. b. How high from the break-up point does the 0.3-kg piece go before coming to rest? c. Where does the 0.7-kg piece land relative to where it was fired from?arrow_forwardA 65.0-kg person throws a 0.045 0-kg snowball forward with a ground speed of 30.0 m/s. A second person, with a mass of 60.0 kg, catches the snowball. Both people are on skates. The first person is initially moving forward with a speed of 2.50 m/s, and the second person is initially at rest. What are the velocities of the two people after the snowball is exchanged? Disregard friction between the skates and the ice.arrow_forwardTwo automobiles of equal mass approach an intersection. One vehicle is traveling with velocity 13.0 m/s toward the east, and the other is traveling north with velocity v2i. Neither driver sees the other. The vehicles collide in the intersection and stick together, leaving parallel skid marks at an angle of 55.0 north of east The speed limit for both roads is 35 mi/h, and the driver of the northward-moving vehicle claims he was within the limit when the collision occurred. Is he telling the truth?arrow_forward
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning