(a)
The speed
(a)
Answer to Problem 88P
The speed of larger mass after collision is
Explanation of Solution
Given:
The mass of small object is
The mass of large object is
The speed of small object before collision is
The speed of large object before collision is
The speed of small object after collision is
Formula Used:
The expression for the vertical angle is given by,
The expression for the horizontal angle is given by,
The expression for conservation of momentum is X-direction is,
The expression for conservation of momentum is Y-direction is,
Calculation:
The vertical angle is calculated as,
The horizontal angle is calculated as,
The expression for conservation of momentum is X-direction is calculated as,
The expression for conservation of momentum is Y-direction is calculated as,
Square Equation (1) and (2) and add them.
Further simplify the above,
Divide Equation (2) by (1).
Conclusion:
Therefore, the speed of larger object after collision is
(b)
The proof that collision is elastic.
(b)
Answer to Problem 88P
It is proved that collision is elastic.
Explanation of Solution
Formula used:
The expression for kinetic energy before collision is,
The expression for kinetic energy after collision is,
Calculation:
The expression for kinetic energy before collision is calculated as,
The expression for kinetic energy after collision is calculated as,
Conclusion:
Since kinetic energy before collision is the same as kinetic energy after collision Therefore, it is proved that collision is elastic.
Want to see more full solutions like this?
Chapter 8 Solutions
Physics for Scientists and Engineers
- A proton traveling at 3.0106m/s scatters elastically from an initially stationary alpha particle and is deflected at an angle of 85 with respect to its initial velocity. Given that the alpha particle has four times the mass of the proton, what percent of its initial kinetic energy does the proton retain after the collision?arrow_forwardFor the preceding problem, find the final speed of the case of each sled for the case of an elastic collision.arrow_forwardTwo projectiles of mass m1 and m2 , are fired at the same speed but in opposite directions from two launch sites separated by a distance D. They both reach the same spot in their highest point and strike there. As a result of the impact they stick together and move as a single body afterwards. Find the place they will land.arrow_forward
- Check Your Understanding Even if there were some friction on the ice, it is still possible to use conservation of momentum to solve this problem, but you would need to imposed an additional condition on the problem. What is that additional condition?arrow_forwardA head-on, elastic collision occurs between two billiard balls of equal mass. If a red ball is traveling to the right with speed v and a blue ball is traveling to the left with speed 3v before the collision, what statement is true concerning their velocities subsequent to the collision? Neglect any effects of spin. (a) The red ball travels to the left with speed v, while the blue ball travels to the right with speed 3v. (b) The red ball travels to the left with speed v, while the blue ball continues to move to the left with a speed 2v. (c) The red ball travels to the left with speed 3v, while the blue ball travels to the right with speed v. (d) Their final velocities cannot be determined because momentum is not conserved in the collision. (e) The velocities cannot be determined without knowing the mass of each ball.arrow_forwardWhat is the average momentum of an avalanche that moves a 40-cm-thick layer of snow over an area of 100 m by 500 m over a distance of 1 km down a hill in 5.5 s? Assume a density of 350kg/m3 for the snow.arrow_forward
- Check Your Understanding Would the ball’s change of momentum have been larger, smaller, or the same, if it had collided with the floor and stopped (without bouncing)? Would the ball’s change of momentum have been larger, smaller, or the same, if it had collided with the floor and stopped (without bouncing)?arrow_forwardTwo particles of masses m1 and m2 , move uniformly in different circles of radii R1 and R2 R2 about origin in the x, y-plane. The x- and y-coordinates of the center of mass and that of particle 1 are given as follows (where length is in meters and tin seconds): x1(t)=4cos(2t) , y1(t)=4sin(2t) and: xCM(t)=4cos(2t) , yCM(t)=3sin(2t) . a. Find the radius of the circle in which particle 1 moves. b. Find the x- and y-coordinates of particle 2 and the radius of the circle this particle moves.arrow_forwardCheck Your Understanding The changes of momentum for Philae and for Comet 67/P were equal (in magnitude). Were the impulses experienced by Philae and the comet equal? How about the forces? How about the changes of kinetic energies?arrow_forward
- A 2-kg object moving to the right with a speed of 4 m/s makes a head-on, elastic collision with a 1-kg object that is initially at rest. The velocity of the 1-kg object after the collision is (a) greater than 4 m/s, (b) less than 4 m/s, (c) equal to 4 m/s, (d) zero, or (e) impossible to say based on the information provided.arrow_forwardA car of mass 750 kg traveling at a velocity of 27 m/s in the positive x-direction crashes into the rear of a truck of mass 1 500 kg that is at rest and in neutral at an intersection. If the collision is inelastic and the truck moves forward at 15.0 m/s, what is the velocity of the car after the collision? (See Section 6.3.)arrow_forwardIn an elastic collision of two particles with masses m1 and m2, the initial velocities are u1 and u2 = u1. If the initial kinetic energies of the two particles are equal, find the conditions on u1/u2 and m1/m2 such that m1 is at rest after the collision. Examine both cases for the sign of .arrow_forward
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University