
(a)
The total Kinetic Energy of the two blocks.
(a)

Answer to Problem 41P
The total kinetic energy of the two blocks is
Explanation of Solution
Given:
The mass of block 1 is
The velocity of the block 1 in positive x direction is
The mass of block 2 is
The velocity of block 2 in negative x direction
Formula used:
The expression for kinetic energy is given as,
Here,
Calculation:
The total Kinetic energy of the two blocks can be calculated as,
Further solving the above equation,
Conclusion:
Therefore, the total kinetic energy of the two blocks is
(b)
The velocity of centre of mass of the two block system.
(b)

Answer to Problem 41P
The velocity of centre of mass of the two block system is
Explanation of Solution
Given:
The mass of block 1 is
The velocity of the block 1 in positive x direction is
The mass of block 2 is
The velocity of block 2 in negative x direction
Formula used:
The expression for momentum is given as,
Calculation:
The momentum of the system remains conserved and it can be calculated as,
Conclusion:
Therefore, the velocity of centre of mass of the two block system is
(c)
The velocity of each block relative to the centre of mass.
(c)

Answer to Problem 41P
The velocity of the block 1 relative to the centre of mass is
Explanation of Solution
Given:
The velocity of the block 1 in positive x direction is
The velocity of block 2 in negative x direction
Formula used:
The expression for the velocity with respect to centre of mass is given as,
Here,
Calculation:
The velocity of block 1 with respect to the centre of mass can be calculated as,
The velocity of block 2 with respect to the centre of mass can be calculated as,
Conclusion:
Therefore, the velocity of the block 1 relative to the centre of mass is
(d)
The kinetic energy of the blocks relative to the centre of mass.
(d)

Answer to Problem 41P
The kinetic energy of the blocks relative to the centre of mass is
Explanation of Solution
Given:
The velocity of the block 1 in positive x direction is
The velocity of block 2 in negative x direction
Formula used:
The expression for kinetic energy is given by,
Calculation:
The total Kinetic energy of the two blocks can be calculated as,
Further solving the above equation,
Conclusion:
Therefore, the kinetic energy of the blocks relative to the centre of mass is
(e)
The proof that the kinetic energy in part (a) is greater than the kinetic energy in part (d) by an amount equal to the kinetic energy with respect to centre of mass.
(e)

Answer to Problem 41P
The kinetic energy in part (a) is greater than the kinetic energy in part (d) by an amount equal to the kinetic energy with respect to centre of mass.
Explanation of Solution
Given:
The mass of block 1 is
The velocity of the block 1 in positive x direction is
The mass of block 2 is
The velocity of block 2 in negative x direction
Formula used:
The expression for kinetic energy is given by,
Calculation:
The total Kinetic energy of the two blocks can be calculated as,
The above result is equal to
Conclusion:
Therefore, the kinetic energy in part (a) is greater than the kinetic energy in part (d) by an amount equal to the kinetic energy with respect to centre of mass.
Want to see more full solutions like this?
Chapter 8 Solutions
Physics for Scientists and Engineers
- 1. An arrangement of three charges is shown below where q₁ = 1.6 × 10-19 C, q2 = -1.6×10-19 C, and q3 3.2 x 10-19 C. 2 cm Y 93 92 91 X 3 cm (a) Calculate the magnitude and direction of the net force on q₁. (b) Sketch the direction of the forces on qiarrow_forward(Figure 1)In each case let w be the weight of the suspended crate full of priceless art objects. The strut is uniform and also has weight w Find the direction of the force exerted on the strut by the pivot in the arrangement (a). Express your answer in degrees. Find the tension Tb in the cable in the arrangement (b). Express your answer in terms of w. Find the magnitude of the force exerted on the strut by the pivot in the arrangement (b). Express your answer in terms of w.arrow_forward(Figure 1)In each case let ww be the weight of the suspended crate full of priceless art objects. The strut is uniform and also has weight w. Find the direction of the force exerted on the strut by the pivot in the arrangement (b). Express your answer in degrees.arrow_forward
- A 70.0 cm, uniform, 40.0 N shelf is supported horizontally by two vertical wires attached to the sloping ceiling (Figure 1). A very small 20.0 N tool is placed on the shelf midway between the points where the wires are attached to it. Find the tension in the left-hand wire. Express your answer with the appropriate units.arrow_forwardFind the total bind Mev. binding energy for 13 Carbon, 6C (atomic mass = 13.0033554)arrow_forwardWhat is the 27 energy absorbed in this endothermic Auclear reaction 2] Al + 'n → 27 Mg + ! H? (The atom mass of "Al is 26.981539u. and that of 11 Mg is 26.984341u) MeVarrow_forward
- What is the energy released in this nuclear reaction 1 F + "', H-1 O+ He? 19 19 16 (The atomic mass of 1F is 18.998403 u, and that of 20 is 15.9949154) MeV.arrow_forwardWhat is the energy released in this B+ nuclear reaction خالد 2½ Al w/ Mg + ie? (The atomic mass of 11 Al is 23.9999394 and that > of 12 Mg is 23.985041 u) MeV.arrow_forwardWhat is the energy released / absorbed in this nuclear reaction 14 N+ & He → » O + ! N? (The atomic mass of 14 N is 14.003074u. 17N+ and that of 10 is 16.9991324). MeVarrow_forward
- Can someone help me answer this question thanks.arrow_forwardCan someone help me with this question thanks.arrow_forward4B. Four electrons are located on the corners of a square, one on each corner, with the sides of the square being 25 cm long. a) Draw a sketch of the scenario and use your sketch to b) Determine the total force (magnitude and direction) on one of the electrons from the other three?arrow_forward
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill





