Physics for Scientists and Engineers
Physics for Scientists and Engineers
6th Edition
ISBN: 9781429281843
Author: Tipler
Publisher: MAC HIGHER
bartleby

Videos

Question
Book Icon
Chapter 8, Problem 41P

(a)

To determine

The total Kinetic Energy of the two blocks.

(a)

Expert Solution
Check Mark

Answer to Problem 41P

The total kinetic energy of the two blocks is 43.5J .

Explanation of Solution

Given:

The mass of block 1 is m1=3kg .

The velocity of the block 1 in positive x direction is v1=5m/s .

The mass of block 2 is m2=3kg .

The velocity of block 2 in negative x direction v2=2m/s .

Formula used:

The expression for kinetic energy is given as,

  KE=12mv2

Here, m is the mass of the body and v is the velocity of the body.

Calculation:

The total Kinetic energy of the two blocks can be calculated as,

  KE=KE1+KE2=12m1v12+12m2v22=12×3kg×(5m/s)2+12×3kg×(2m/s)2=43.5kgms2(J kg m s 2 )

Further solving the above equation,

  KE=43.5J

Conclusion:

Therefore, the total kinetic energy of the two blocks is 43.5J .

(b)

To determine

The velocity of centre of mass of the two block system.

(b)

Expert Solution
Check Mark

Answer to Problem 41P

The velocity of centre of mass of the two block system is (1.5m/s)i^ .

Explanation of Solution

Given:

The mass of block 1 is m1=3kg .

The velocity of the block 1 in positive x direction is v1=5m/s .

The mass of block 2 is m2=3kg .

The velocity of block 2 in negative x direction v2=2m/s .

Formula used:

The expression for momentum is given as,

  p=mv

Calculation:

The momentum of the system remains conserved and it can be calculated as,

  Mvcm=m1v1+m2v2vcm=m1v1+m2v2m1+m2vcm=3kg×( 5m/s )i^+3kg×( 2m/s )i^3kg+3kgvcm=(1.5m/s)i^

Conclusion:

Therefore, the velocity of centre of mass of the two block system is (1.5m/s)i^ .

(c)

To determine

The velocity of each block relative to the centre of mass.

(c)

Expert Solution
Check Mark

Answer to Problem 41P

The velocity of the block 1 relative to the centre of mass is (3.5m/s)i^ and the velocity of the block 2 with respect to centre of mass is (3.5m/s)i^ .

Explanation of Solution

Given:

The velocity of the block 1 in positive x direction is v1=5m/s .

The velocity of block 2 in negative x direction v2=2m/s .

Formula used:

The expression for the velocity with respect to centre of mass is given as,

  vrel=vvcm

Here, vrel is the velocity of the blocks with respect to the centre of mass.

Calculation:

The velocity of block 1 with respect to the centre of mass can be calculated as,

  vrel=vvcmv1,rel=(5m/s)i^(1.5m/s)i^=(3.5m/s)i^

The velocity of block 2 with respect to the centre of mass can be calculated as,

  vrel=vvcmv2,rel=(2m/s)i^(1.5m/s)i^=(3.5m/s)i^

Conclusion:

Therefore, the velocity of the block 1 relative to the centre of mass is (3.5m/s)i^ and the velocity of the block 2 with respect to centre of mass is (3.5m/s)i^ .

(d)

To determine

The kinetic energy of the blocks relative to the centre of mass.

(d)

Expert Solution
Check Mark

Answer to Problem 41P

The kinetic energy of the blocks relative to the centre of mass is 36.75J .

Explanation of Solution

Given:

The velocity of the block 1 in positive x direction is v1=5m/s .

The velocity of block 2 in negative x direction v2=2m/s .

Formula used:

The expression for kinetic energy is given by,

  KE=12mv2

Calculation:

The total Kinetic energy of the two blocks can be calculated as,

  KErel=KE1,rel+KE2,rel=12m1v1,rel2+12m2v2,rel2=12×3kg×(3.5m/s)2+12×3kg×(3.5m/s)2=36.75kgms2(J kg m s 2 )

Further solving the above equation,

  KE=36.75J

Conclusion:

Therefore, the kinetic energy of the blocks relative to the centre of mass is 36.75J .

(e)

To determine

The proof that the kinetic energy in part (a) is greater than the kinetic energy in part (d) by an amount equal to the kinetic energy with respect to centre of mass.

(e)

Expert Solution
Check Mark

Answer to Problem 41P

The kinetic energy in part (a) is greater than the kinetic energy in part (d) by an amount equal to the kinetic energy with respect to centre of mass.

Explanation of Solution

Given:

The mass of block 1 is m1=3kg .

The velocity of the block 1 in positive x direction is v1=5m/s .

The mass of block 2 is m2=3kg .

The velocity of block 2 in negative x direction v2=2m/s .

Formula used:

The expression for kinetic energy is given by,

  KE=12mv2

Calculation:

The total Kinetic energy of the two blocks can be calculated as,

  KEcm=12(m1+m2)vcm2=12(6kg)×(1.5m/s)2=6.75kgms2( 1J kg m s 2 )=6.75J

The above result is equal to KEKErel .

Conclusion:

Therefore, the kinetic energy in part (a) is greater than the kinetic energy in part (d) by an amount equal to the kinetic energy with respect to centre of mass.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Answers with -1.828, -1.31 or 939.3 are not correct.
Three slits, each separated from its neighbor by d = 0.06 mm, are illuminated by a coherent light source of wavelength 550 nm. The slits are extremely narrow. A screen is located L = 2.5 m from the slits. The intensity on the centerline is 0.05 W. Consider a location on the screen x = 1.72 cm from the centerline. a) Draw the phasors, according to the phasor model for the addition of harmonic waves, appropriate for this location. b) From the phasor diagram, calculate the intensity of light at this location.
A Jamin interferometer is a device for measuring or for comparing the indices of refraction of gases. A beam of monochromatic light is split into two parts, each of which is directed along the axis of a separate cylindrical tube before being recombined into a single beam that is viewed through a telescope. Suppose we are given the following, • Length of each tube is L = 0.4 m. • λ= 598 nm. Both tubes are initially evacuated, and constructive interference is observed in the center of the field of view. As air is slowly let into one of the tubes, the central field of view changes dark and back to bright a total of 198 times. (a) What is the index of refraction for air? (b) If the fringes can be counted to ±0.25 fringe, where one fringe is equivalent to one complete cycle of intensity variation at the center of the field of view, to what accuracy can the index of refraction of air be determined by this experiment?

Chapter 8 Solutions

Physics for Scientists and Engineers

Ch. 8 - Prob. 11PCh. 8 - Prob. 12PCh. 8 - Prob. 13PCh. 8 - Prob. 14PCh. 8 - Prob. 15PCh. 8 - Prob. 16PCh. 8 - Prob. 17PCh. 8 - Prob. 18PCh. 8 - Prob. 19PCh. 8 - Prob. 20PCh. 8 - Prob. 21PCh. 8 - Prob. 22PCh. 8 - Prob. 23PCh. 8 - Prob. 24PCh. 8 - Prob. 25PCh. 8 - Prob. 26PCh. 8 - Prob. 27PCh. 8 - Prob. 28PCh. 8 - Prob. 29PCh. 8 - Prob. 30PCh. 8 - Prob. 31PCh. 8 - Prob. 32PCh. 8 - Prob. 33PCh. 8 - Prob. 34PCh. 8 - Prob. 35PCh. 8 - Prob. 36PCh. 8 - Prob. 37PCh. 8 - Prob. 38PCh. 8 - Prob. 39PCh. 8 - Prob. 40PCh. 8 - Prob. 41PCh. 8 - Prob. 42PCh. 8 - Prob. 43PCh. 8 - Prob. 44PCh. 8 - Prob. 45PCh. 8 - Prob. 46PCh. 8 - Prob. 47PCh. 8 - Prob. 48PCh. 8 - Prob. 49PCh. 8 - Prob. 50PCh. 8 - Prob. 51PCh. 8 - Prob. 52PCh. 8 - Prob. 53PCh. 8 - Prob. 54PCh. 8 - Prob. 55PCh. 8 - Prob. 56PCh. 8 - Prob. 57PCh. 8 - Prob. 58PCh. 8 - Prob. 59PCh. 8 - Prob. 60PCh. 8 - Prob. 61PCh. 8 - Prob. 62PCh. 8 - Prob. 63PCh. 8 - Prob. 64PCh. 8 - Prob. 65PCh. 8 - Prob. 66PCh. 8 - Prob. 67PCh. 8 - Prob. 68PCh. 8 - Prob. 69PCh. 8 - Prob. 70PCh. 8 - Prob. 71PCh. 8 - Prob. 72PCh. 8 - Prob. 73PCh. 8 - Prob. 74PCh. 8 - Prob. 75PCh. 8 - Prob. 76PCh. 8 - Prob. 77PCh. 8 - Prob. 78PCh. 8 - Prob. 79PCh. 8 - Prob. 80PCh. 8 - Prob. 81PCh. 8 - Prob. 82PCh. 8 - Prob. 83PCh. 8 - Prob. 84PCh. 8 - Prob. 85PCh. 8 - Prob. 86PCh. 8 - Prob. 87PCh. 8 - Prob. 88PCh. 8 - Prob. 89PCh. 8 - Prob. 90PCh. 8 - Prob. 91PCh. 8 - Prob. 92PCh. 8 - Prob. 93PCh. 8 - Prob. 94PCh. 8 - Prob. 95PCh. 8 - Prob. 96PCh. 8 - Prob. 98PCh. 8 - Prob. 99PCh. 8 - Prob. 100PCh. 8 - Prob. 101PCh. 8 - Prob. 102PCh. 8 - Prob. 103PCh. 8 - Prob. 104PCh. 8 - Prob. 105PCh. 8 - Prob. 106PCh. 8 - Prob. 107PCh. 8 - Prob. 108PCh. 8 - Prob. 109PCh. 8 - Prob. 110PCh. 8 - Prob. 111PCh. 8 - Prob. 112PCh. 8 - Prob. 113PCh. 8 - Prob. 114PCh. 8 - Prob. 115PCh. 8 - Prob. 116PCh. 8 - Prob. 117P
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Momentum | Forces & Motion | Physics | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=DxKelGugDa8;License: Standard YouTube License, CC-BY