Engineering Electromagnetics
9th Edition
ISBN: 9780078028151
Author: Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher: Mcgraw-hill Education,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8, Problem 8.9P
A current of-100az A/m flows on the conducting cylinder p = 5 mm, and +500az A/m is present on the conducting cylinder p = 1 mm. Find the magnitude of the total force per meter length that is acting to split the outer cylinder apart along its length.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Figure 1 shows a ferromagnetic core with a relative permeability of 1850, the depth of the core
is 10 cm. The air gap on the core is 0.2 cm with effective area 5 % larger than their physical
size due to fringing effects. Given the number of turns N = 500 and current i = 2 x, where x is
the last digit of your student ID (example: EEE1705590, then i = 20 A):
(a) Find the total reluctance of the core and air gap. [CLO1-PL01:C2]
(b) Find the flux density of the air gap. [CLO1-PLO1:C2]
13 cm
23 cm
9 cm
5.6 сm
Air gap
31 cm
N turns
7 cm
Figure 1
A magnetic core with an air gap is shown
below. For a relative permeability is 9500,
and the space free permeability is 4Ttx107
H/m. Find the reluctance of the left leg and
the top side of the core. Ignore the gap in
your calculations.
10 cm
0.1 cm
gap
20 cm
5 cm
5 cm
40 cm
5 cm
core depth = 10 cm
Select one:
a. Rjeft = 3.770 KA.t./Wb , Rtop = 4.607
KA.t/Wb
b. None
c. Rieft = 377.0 A.t./Wb , Rtop = 460.7
A.t/Wb
d. Rjeft = 325.1 A.t./Wb , Rtop = 402.3
A.t/Wb
----------
> Figure 1 shows a ferromagnetic core whose mean path length is 40 cm. There is a
small gap of 0.05 cm in the structure of the otherwise whole core. The cross-sectional
area of the core is 12cm2, the relative permeability of the core is 4000 and the coil of
wire on the core has 400 turns. Assume that fringing in the air gap increases the
effective cross-sectional area of the air gap by 5 percent. Given this information.
Find the total reluctance of the flux path (iron plus air gap) and the current
required to produce a flux density of 0.5 T in the air gap.
N=400
tums
0.05 cm
A=12 cm?
le-40 cm
Figure 1
Chapter 8 Solutions
Engineering Electromagnetics
Ch. 8 - A point charge, Q = - 0.3 /C and m = 3 Ă— -10-16...Ch. 8 - Prob. 8.2PCh. 8 - Prob. 8.3PCh. 8 - Show that a charged particle in a uniform magnetic...Ch. 8 - Prob. 8.5PCh. 8 - Show that the differential work in moving a...Ch. 8 - A conducting strip of infinite length lies in the...Ch. 8 - Two conducting strips, having infinite length in...Ch. 8 - A current of-100az A/m flows on the conducting...Ch. 8 - A planar transmission line consists of two...
Ch. 8 - Prob. 8.11PCh. 8 - Two circular wire rings are parallel to each...Ch. 8 - An infinitely long current filament is oriented...Ch. 8 - A solenoid is 25 era long, 3 cm in diameter, and...Ch. 8 - Prob. 8.15PCh. 8 - Prob. 8.16PCh. 8 - Prob. 8.17PCh. 8 - Prob. 8.18PCh. 8 - Given a material for which ℵK = 3.1 and within...Ch. 8 - Find H in a material where (a) fir = 4.2, there...Ch. 8 - Prob. 8.21PCh. 8 - Prob. 8.22PCh. 8 - Calculate values for HO,B0, and M0 at p = c for a...Ch. 8 - Two current sheets, K0,ay, A/m at z = 0 and -K0,ay...Ch. 8 - Prob. 8.25PCh. 8 - Prob. 8.26PCh. 8 - Let đ�œ‡rj = 2 in region 1, defined by 2x + 3y —...Ch. 8 - For values of B below the knee on the...Ch. 8 - Prob. 8.29PCh. 8 - Prob. 8.30PCh. 8 - A toroid is constructed of a magnetic material...Ch. 8 - Prob. 8.32PCh. 8 - Prob. 8.33PCh. 8 - Determine the energy stored per unit length in the...Ch. 8 - Prob. 8.35PCh. 8 - Prob. 8.36PCh. 8 - A Toroid has known, reluctance R. Two windings...Ch. 8 - Prob. 8.38PCh. 8 - Conducting planes in air at Z = 0 and z = d carry...Ch. 8 - Prob. 8.40PCh. 8 - Prob. 8.41PCh. 8 - Find the mutual inductance between two filaments...Ch. 8 - Prob. 8.43PCh. 8 - Prob. 8.44PCh. 8 - Beginning with the definition, of the scalar...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A solenoid displaces a material plunger ferromagnetic at a distance of 1 cm. The inductance of the solenoid in function of the position of the plunger is given by: L(x) = 0,05 – 20000((x – xo)) H, where x ranges from 0 to 0.01 m and Xo = 0.25 m Calculate the maximum force generated in this solenoid for a current of 1 A.arrow_forwardfind the potential difference for each section and between the two ends of the wirearrow_forwardA solenoid displaces a material plunger ferromagnetic at a distance of 1 cm. The inductance of the solenoid in function of the position of the plunger is given by: L(x) = 0,05 – 20000((r - xo)) H, where x ranges from 0 to 0.01 m and xo = 0.25 m Is there a point where the force generated in the plunger is zero? If so, for what value of x?arrow_forward
- MENT OF EDI 3. A long, straight conductor carries a current of 8.0 A and is directed to the right. What is the magnitude of the magnetic field produced by the current-carrying wire 2.0 m from the wire? (See figure below) Draw the magnetic field to determine the direction of the field at the specified point P. RICHA AS SACYarrow_forwarda rectangular ferromagnetic core 40 x 60 mm has a flux φ = 1.44 mwb. an air gap in the core is of length la = 2.5 mm. find the ni drop across the air gap.arrow_forwardPlease solve it quickly....arrow_forward
- Can you solve this question pleasearrow_forwardA solenoid displaces a material plunger ferromagnetic at a distance of 1 cm. The inductance of the solenoid in function of the position of the plunger is given by: L(x) = 0,05 – 20000((x – xo)) H, where x ranges from 0 to 0.01 m and xo = 0.25 m Determine the direction of the force generated in the plunger (same direction of x or in the opposite direction?), the point where the force is zero (if it exists) and the maximum force generated for a current of 1 Aarrow_forwarda rod of semiconducting meterial of length L = 2 m and cross-sectioanal area A=5mm2 lies along the x axis between x=0 and x=L. the meterial obeys Ohm's law, and its resistivity varies along the rod according to p=p0 (1-(x2/L2)) where p0=4,5 * 10-4 ohm*m. the end of the rod at x=0 is at a potential V0= 30 V greater than the end at x = L. a)what is the total resistance, in units of ohm, of the rod ? b)what is the current, in units of miliamperes in the rod? c)what is the electric potential, in units of Volt in the rod at x=L/2 ? d)what is the electric field magnitude E, in units of V/m, in the rod at x=L/2 ?arrow_forward
- → Gold 1 km Silver 2 km 1. A cylindrical conductor wire is made using gold (o = 4.1 × 107 S/m) and silver (o = 6.3 × 107 S/m) as shown in the figure. 1 km section of the cylindrical conductor is made of gold and 2 km section of the cylindrical conductor is made of silver. The radius of the cylinder is r = 4 mm. A DC current of 20 A is flowing through 3 km of this wire. (40 points) Find the resistance of the wire. a.arrow_forward3) Find the relative permeability of the typical ferromagnetic material whose magnetization curve is shown in the figure (next page) at (a) H= 50, (b) H= 100, (c) H= 500 and (d) H= 1000 (A-turns/m) 2.8 2.6 2.4 2.2 2.0 E 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 10 20 30 40 50 100 200 300 5 1000 2000 5000 Magnetizing intensity H, A• turns/m Flux density B (T)arrow_forwardDetermine the mutual inductance between a very long straightwire and a conducting circular loop of radius “b” m set up “d” mapart on the same plane as shown figure.Problem:arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
Electric Charge and Electric Fields; Author: Professor Dave Explains;https://www.youtube.com/watch?v=VFbyDCG_j18;License: Standard Youtube License