Engineering Electromagnetics
9th Edition
ISBN: 9780078028151
Author: Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher: Mcgraw-hill Education,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 8, Problem 8.15P
To determine
The torque acting on the finite filament about
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
MENT OF EDI
3. A long, straight conductor carries a current of 8.0 A and is directed to the right.
What is the magnitude of the magnetic field produced by the current-carrying
wire 2.0 m from the wire? (See figure below) Draw the magnetic field to
determine the direction of the field at the specified point P.
RICHA
AS
SACY
A solenoid displaces a material plunger ferromagnetic at a distance of 1 cm. The
inductance of the solenoid in function of the position of the plunger is given by:
L(x) = 0,05 – 20000((r - xo)) H,
where x ranges from 0 to 0.01 m and xo = 0.25 m
Is there a point where the force generated in the plunger is zero? If so, for what value
of x?
Find the inductance per unit length of a very long solenoid with a unit length of N windings. The permeability of the core is μ.
Chapter 8 Solutions
Engineering Electromagnetics
Ch. 8 - A point charge, Q = - 0.3 /C and m = 3 Ă— -10-16...Ch. 8 - Prob. 8.2PCh. 8 - Prob. 8.3PCh. 8 - Show that a charged particle in a uniform magnetic...Ch. 8 - Prob. 8.5PCh. 8 - Show that the differential work in moving a...Ch. 8 - A conducting strip of infinite length lies in the...Ch. 8 - Two conducting strips, having infinite length in...Ch. 8 - A current of-100az A/m flows on the conducting...Ch. 8 - A planar transmission line consists of two...
Ch. 8 - Prob. 8.11PCh. 8 - Two circular wire rings are parallel to each...Ch. 8 - An infinitely long current filament is oriented...Ch. 8 - A solenoid is 25 era long, 3 cm in diameter, and...Ch. 8 - Prob. 8.15PCh. 8 - Prob. 8.16PCh. 8 - Prob. 8.17PCh. 8 - Prob. 8.18PCh. 8 - Given a material for which ℵK = 3.1 and within...Ch. 8 - Find H in a material where (a) fir = 4.2, there...Ch. 8 - Prob. 8.21PCh. 8 - Prob. 8.22PCh. 8 - Calculate values for HO,B0, and M0 at p = c for a...Ch. 8 - Two current sheets, K0,ay, A/m at z = 0 and -K0,ay...Ch. 8 - Prob. 8.25PCh. 8 - Prob. 8.26PCh. 8 - Let đ�œ‡rj = 2 in region 1, defined by 2x + 3y —...Ch. 8 - For values of B below the knee on the...Ch. 8 - Prob. 8.29PCh. 8 - Prob. 8.30PCh. 8 - A toroid is constructed of a magnetic material...Ch. 8 - Prob. 8.32PCh. 8 - Prob. 8.33PCh. 8 - Determine the energy stored per unit length in the...Ch. 8 - Prob. 8.35PCh. 8 - Prob. 8.36PCh. 8 - A Toroid has known, reluctance R. Two windings...Ch. 8 - Prob. 8.38PCh. 8 - Conducting planes in air at Z = 0 and z = d carry...Ch. 8 - Prob. 8.40PCh. 8 - Prob. 8.41PCh. 8 - Find the mutual inductance between two filaments...Ch. 8 - Prob. 8.43PCh. 8 - Prob. 8.44PCh. 8 - Beginning with the definition, of the scalar...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Q35. An infinitely long conductor is bent into an L shape as shown in Figure. If a direct current of 3 A flows in the conductor, the magnetic field intensity (H) at (2, 2, 0): -0.6792az -0.54336az -0.4075az -0.27168azarrow_forwardA solenoid displaces a material plunger ferromagnetic at a distance of 1 cm. The inductance of the solenoid in function of the position of the plunger is given by: L(x) = 0,05 – 20000((x – xo)) H, where x ranges from 0 to 0.01 m and Xo = 0.25 m Calculate the maximum force generated in this solenoid for a current of 1 A.arrow_forwardQ-1: A coaxial cable or coaxial cylindrical capacitor the length of L of two coaxial conductors of inner radius "a" and outer radius "b" (b> a) as shown in the figure. Drive an equation for the capacitance of this capacitor. (you must show all symbols you will use on the figure). Assume the inner cable has +Q, and the outer cable has-Q charges. dielectric earrow_forward
- A long straight wire placed along az -axis carries a current of I = 6 A in the +az direction. The magnetic flux density at a distance r = 5cm from the wire will bearrow_forward→ Gold 1 km Silver 2 km 1. A cylindrical conductor wire is made using gold (o = 4.1 × 107 S/m) and silver (o = 6.3 × 107 S/m) as shown in the figure. 1 km section of the cylindrical conductor is made of gold and 2 km section of the cylindrical conductor is made of silver. The radius of the cylinder is r = 4 mm. A DC current of 20 A is flowing through 3 km of this wire. (40 points) Find the resistance of the wire. a.arrow_forwardThe figure shows a piece of wire curved in empty space with its left side half-circle, and its linear parts are supposed to be long enough. Determine the magnetic induction at point M if a constant I current flows through this conductor. a M :a Iarrow_forward
- A solenoid displaces a material plunger ferromagnetic at a distance of 1 cm. The inductance of the solenoid in function of the position of the plunger is given by: L(x) = 0,05 – 20000((x – xo)) H, where x ranges from 0 to 0.01 m and xo = 0.25 m Determine the direction of the force generated in the plunger (same direction of x or in the opposite direction?), the point where the force is zero (if it exists) and the maximum force generated for a current of 1 Aarrow_forwardThree long, parallel, straight wires each carrying a 8.0 A current pass through the vertices of an equilateral triangle (L= 8.0 cm) as shown in the figure below. Currents on wires B and C are out of page while that of wire A is into the page. What is the r and y components of the magnetic field vector at the point of the wire B? Give your answer in uT. В The answer is integer. L Carrow_forwardNeed answer to these 2 questions plzarrow_forward
- Write this out clearlyarrow_forwardA straight wire along z-axis of length 2 meters extend from (0, 0, -1) to (0, 0. 1) and a current of 1 Ampere is passed through it. The magnetic field at a point along the z-axis at a distance of 3 meters from either end of the wire is given byarrow_forwardA coil has N=25 turns. The toroid on which the coil is wound has ID=5 cm and OD = 5.5 cm. The geometryresults in a mean path length of 0.165 meters and a cross sectional area of 4.91 micrometer squared. What equation is used for calculating the field strength (also called intensity) H along the mean-path length within the toroid? Calculate the Reluctance in the path of flux lines if Mr is 500.What is the resulting Inductance?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,