University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8, Problem 8.9E
A 0.160-kg hockey puck is moving on an icy, frictionless, horizontal surface. At t = 0. The puck is moving to the right at 3.00 m/s. (a) Calculate the velocity of the puck (magnitude and direction) after a force of 25.0 N directed to the right has been applied for 0.050 s. (b) If, instead, a force of 12.0 N directed to the left is applied from t = 0 to t = 0.050 s. what is the final velocity of the puck?
Expert Solution & Answer
Learn your wayIncludes step-by-step video
schedule02:29
Students have asked these similar questions
A 1.90 kg box is moving to the right with speed 9.00 m/s on a horizontal, frictionless surface. At t = 0 a horizontal force is applied to the box. The force is directed to the left and has magnitude F(t)=( 6.00 N/s^2 )t2
If the force continues to be applied, what is the velocity of the box at 3.50 s?
A space probe of mass 5.00 x 104 kg is traveling at 1.10 x 104 m/s through deep space. No forces act on the probe except that generated by its own engine. No forces act on the probe except that generated by its own engine. The engine exerts a constant external force of 4.00 x 105 N, directed parallel to the displacement, which is 2.50 x 106 m. Determine the final velocity of the probe.
A golf ball is hit from the ground (elevation is zero) and takes off with a launch speed of 55 m/s and a launch angle of 25 degrees. The acceleration due to gravity g = 9.81 m/s2 downward (negative y direction). The wind resistance is proportional to velocity and is defined by constant k = 0.014 N / (m/s). The mass of the golf ball m = 46 grams.
1) Determine the horizontal x1(t) and vertical y1(t) positions as a function of time ignoring air / wind resistance in both the x and y directions.
2) Determine the horizontal x2(t) and vertical y2(t) positions as a function of time including air / wind resistance in both the x and y directions.
3) For the case ignoring wind / air resistance, calculate how long the ball is in the air (in seconds) and how far away the ball lands from where it was hit (in meters).
Chapter 8 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 8.1 - Rank the following situations according to the...Ch. 8.2 - A spring-loaded toy sits at rest on a horizontal,...Ch. 8.3 - For each situation, state whether the collision is...Ch. 8.4 - Prob. 8.4TYUCh. 8.5 - Will the center of mass in Fig. 8.32 continue on...Ch. 8.6 - (a) If a rocket in gravity-free outer space has...Ch. 8 - In splitting logs with a hammer and wedge, is a...Ch. 8 - Suppose you catch a baseball and then someone...Ch. 8 - When rain falls from the sky, what happens to its...Ch. 8 - A car has the same kinetic energy when it is...
Ch. 8 - A truck is accelerating as it speeds down the...Ch. 8 - (a) If the momentum of a single point object is...Ch. 8 - A woman holding a large rock stands on a...Ch. 8 - In Example 8.7 (Section 8.3), where the two...Ch. 8 - In a completely inelastic collision between two...Ch. 8 - Since for a particle the kinetic energy is given...Ch. 8 - In each of Examples 8.10, 8.11, and 8.12 (Section...Ch. 8 - A glass dropped on the floor is more likely to...Ch. 8 - In Fig. 8.23b, the kinetic energy of the Ping-Pong...Ch. 8 - A machine gun is fired at a steel plate. Is the...Ch. 8 - A net force of 4 N acts on an object initially at...Ch. 8 - A net force with x-component Fx acts on an object...Ch. 8 - A tennis player hits a tennis ball with a racket....Ch. 8 - Prob. 8.18DQCh. 8 - An egg is released from rest from the roof of a...Ch. 8 - A woman stands in the middle of a perfectly...Ch. 8 - At the highest point in its parabolic trajectory,...Ch. 8 - When an object breaks into two pieces (explosion,...Ch. 8 - An apple falls from a tree and feels no air...Ch. 8 - Two pieces of clay collide and stick together....Ch. 8 - Two objects of mass M and 5M are at rest on a...Ch. 8 - A very heavy SUV collides head-on with a very...Ch. 8 - (a) What is the magnitude of the momentum of a...Ch. 8 - In a certain track and field event, the shotput...Ch. 8 - Objects A, B, and C are moving as shown in Fig....Ch. 8 - Two vehicles are approaching an intersection. One...Ch. 8 - One 110-kg football lineman is running to the...Ch. 8 - BIO Biomechanics. The mass of a regulation tennis...Ch. 8 - Force of a Golf Swing. A 0.0450-kg golf ball...Ch. 8 - Force of a Baseball Swing. A baseball has mass...Ch. 8 - A 0.160-kg hockey puck is moving on an icy,...Ch. 8 - A bat strikes a 0.145-kg baseball. Just before...Ch. 8 - CALC At time t = 0 a 2150-kg rocket in outer space...Ch. 8 - BIO Bone Fracture. Experimental tests have shown...Ch. 8 - A 2.00-kg stone is sliding to the right on a...Ch. 8 - CALC Starting at t = 0, a horizontal net force F =...Ch. 8 - To warm up for a match, a tennis player hits the...Ch. 8 - A 68.5-kg astronaut is doing a repair in space on...Ch. 8 - The expanding gases that leave the muzzle of a...Ch. 8 - Two figure skaters, one weighing 625 N and the...Ch. 8 - BIO Animal Propulsion. Squids and octopuses propel...Ch. 8 - You are standing on a sheet of ice that covers the...Ch. 8 - On a frictionless. horizontal air table, puck A...Ch. 8 - When cars are equipped with flexible bumpers, they...Ch. 8 - Two identical 0.900-kg masses are pressed against...Ch. 8 - Block A in Fig. E8.24 has mass 1.00 kg, and block...Ch. 8 - A hunter on a frozen, essentially frictionless...Ch. 8 - An atomic nucleus suddenly bursts apart (fissions)...Ch. 8 - Two ice skaters. Daniel (mass 65.0 kg) and Rebecca...Ch. 8 - You are standing on a large sheet of frictionless...Ch. 8 - You (mass 55 kg) are riding a frictionless...Ch. 8 - An astronaut in space cannot use a conventional...Ch. 8 - Asteroid Collision. Two asteroids of equal mass in...Ch. 8 - Two skaters collide and grab on to each other on...Ch. 8 - A 15.0-kg fish swimming at 1.10 m/s suddenly...Ch. 8 - Two fun-loving otters are sliding toward each...Ch. 8 - Deep Impact Mission. In July 2005, NASAs Deep...Ch. 8 - A 1050-kg sports car is moving westbound at 15.0...Ch. 8 - On a very muddy football field, a 110-kg...Ch. 8 - Accident Analysis. Two cars collide at an...Ch. 8 - Jack (mass 55.0 kg) is sliding due east with speed...Ch. 8 - BIO Bird Defense. To protect their young in the...Ch. 8 - At the intersection of Texas Avenue and University...Ch. 8 - A 5.00-g bullet is fired horizontally into a...Ch. 8 - A Ballistic Pendulum. A 12.0-g rifle bullet is...Ch. 8 - Combining Conservation Laws. A 15.0-kg block is...Ch. 8 - CP A 0.800-kg ornament is hanging by a 1.50-m wire...Ch. 8 - A 0.150-kg glider is moving to the right with a...Ch. 8 - Blocks A (mass 2.00 kg) and B (mass 6.00 kg) move...Ch. 8 - A 10.0-g marble slides to the left at a speed of...Ch. 8 - Moderators. Canadian nuclear reactors use heavy...Ch. 8 - You are at the controls of a particle accelerator,...Ch. 8 - Three odd-shaped blocks of chocolate have the...Ch. 8 - Prob. 8.52ECh. 8 - Pluto and Charon. Plutos diameter is approximately...Ch. 8 - A 1200-kg SUV is moving along a straight highway...Ch. 8 - Prob. 8.55ECh. 8 - At one instant, the center of mass of a system of...Ch. 8 - In Example 8.14 (Section 8.5), Ramon pulls on the...Ch. 8 - CALC A system consists of two particles. At t = 0...Ch. 8 - CALC A radio-controlled model airplane has a...Ch. 8 - Prob. 8.60ECh. 8 - A 70-kg astronaut floating in space in a 110-kg...Ch. 8 - A small rocket burns 0.0500 kg of fuel per second,...Ch. 8 - Obviously, we can make rockets to go very fast,...Ch. 8 - A steel ball with mass 40.0 g is dropped from a...Ch. 8 - Just before it is struck by a racket, a tennis...Ch. 8 - Three identical pucks on a horizontal air table...Ch. 8 - Blocks A (mass 2.00 kg) and B (mass 10.00 kg, to...Ch. 8 - A railroad handcar is moving along straight,...Ch. 8 - Spheres A (mass 0.020 kg), B (mass 0.030 kg), and...Ch. 8 - You and your friends are doing physics experiments...Ch. 8 - CP An 8.00-kg block of wood sits at the edge of a...Ch. 8 - CP A small wooden block with mass 0.800 kg is...Ch. 8 - Combining Conservation Laws. A 5.00-kg chunk of...Ch. 8 - CP Block B (mass 4.00 kg) is at rest at the edge...Ch. 8 - Two blocks have a spring compressed between them,...Ch. 8 - Automobile Accident Analysis. You are called as an...Ch. 8 - Accident Analysis. A 1500-kg sedan goes through a...Ch. 8 - CP A 0.150-kg frame, when suspended from a coil...Ch. 8 - A rifle bullet with mass 8.00 g strikes and embeds...Ch. 8 - A Ricocheting Bullet. A 0.100-kg stone rests on a...Ch. 8 - Prob. 8.81PCh. 8 - Prob. 8.82PCh. 8 - A ball with mass M, moving horizontally at 4.00...Ch. 8 - PA 20.00-kg lead sphere is hanging from a hook by...Ch. 8 - A 4.00-g bullet, traveling horizontally with a...Ch. 8 - A 5.00-g bullet is shot through a 1.00-kg wood...Ch. 8 - CP In a shipping company distribution center, an...Ch. 8 - Neutron Decay. A neutron at rest decays (breaks...Ch. 8 - Antineutrino. In beta decay, a nucleus emits an...Ch. 8 - Jonathan and Jane are sitting in a sleigh that is...Ch. 8 - Friends Burt and Ernie stand at opposite ends of a...Ch. 8 - A 45.0-kg woman stands up in a 60.0-kg canoe 5.00...Ch. 8 - You are standing on a concrete slab that in turn...Ch. 8 - CP In a fireworks display, a rocket is launched...Ch. 8 - A 7.0-kg shell at rest explodes into two...Ch. 8 - CP A 20.0-kg projectile is fired at an angle of...Ch. 8 - CP A fireworks rocket is fired vertically upward....Ch. 8 - A 12.0-kg shell is launched at an angle of 55.0...Ch. 8 - CP An outlaw cuts loose a wagon with two boxes of...Ch. 8 - DATA A 2004 Prius with a 150-lb driver and no...Ch. 8 - DATA In your job in a police lab, you must design...Ch. 8 - DATA For the Texas Department of Public Safety,...Ch. 8 - CALC A Variable-Mass Raindrop. In a...Ch. 8 - Prob. 8.104CPCh. 8 - CALC Use the methods of Challenge Problem 8.104 to...Ch. 8 - BIO MOMENTUM AND THE ARCHERFISH. Archerfish are...Ch. 8 - BIO MOMENTUM AND THE ARCHERFISH. Archerfish are...Ch. 8 - BIO MOMENTUM AND THE ARCHERFISH. Archerfish are...Ch. 8 - BIO MOMENTUM AND THE ARCHERFISH. Archerfish are...
Additional Science Textbook Solutions
Find more solutions based on key concepts
If decomposers usually grow faster and decompose material more quickly in warmer ecosystems why is decompositio...
Campbell Biology (11th Edition)
The data were obtained from a use-dilution test comparing four disinfectants against Salmonella choleraesuis. G...
Microbiology: An Introduction
When you rub your cold hands together, the friction between them results in heat that warms your hands. Why doe...
Anatomy & Physiology (6th Edition)
Why are the top predators in food chains most severely affected by pesticides such as DDT?
Campbell Essential Biology with Physiology (5th Edition)
4. An old-fashioned vinyl record rotates on a turntable at 45 rpm. What are (a) the angular speed in rad/s and ...
College Physics: A Strategic Approach (3rd Edition)
MAKE CONNECTIONS Balancing selection can maintain variation at a locus (see Concept 21.4). Based on the foragin...
Campbell Biology in Focus (2nd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- If the vector components of the position of a particle moving in the xy plane as a function of time are x(t)=(2.5ms2)t2i and y(t)=(5.0ms3)t3j, when is the angle between the net force on the particle and the x axis equal to 45?arrow_forwardA child with mass of 16.5 kg stands on the edge of a park bench and leaps into the air. Her initial speed is 2.4 m/s directed at an angle of 30 degrees above the horizontal. After 0.28 seconds what is the horizontal component of her velocity in m/s?arrow_forwardSharon pushes a tall box across the floor. Her arms (and therefore her push force) of F = 400 N make a theta= 30 degree angle with the horizontal. Since the box rests on ball bearings it is essentially frictionless. Sick of her job, Sharon decides to give the box a brief shove lasting only t = 0.2 seconds. Find the velocity (magnitude and direction) of the box at the completion of Sharon's shove, assuming (a) the box's weight is 490 N, and (b) the box's weight is 122.5 N. In both cases, the box starts from rest.arrow_forward
- A robot with fancy wheels is trained to move in two directions simultaneously. The force in the forward direction is 10 N and the force in the horizontal direction is 8 N. If the robot starts from rest, has a mass of 75 kg and travels for 100 seconds, what is the magnitude of the robot's final displacement?arrow_forwardA duck has a mass of 2.10 kg. As the duck paddles, a force of 0.140 N acts on it in a direction due east. In addition, the current of the water exerts a force of 0.180 N in a direction of 57.0° south of east. When these forces begin to act, the velocity of the duck is 0.100 m/s in a direction due east. Find (a) the magnitude and (b) the direction (relative to due east) of the displacement that the duck undergoes in 3.80 s while the forces are acting. (Note that the angle will be negative in the south of east direction.)arrow_forwardAn electron is a subatomic particle (m= 9.11 x 10-31 kg) that is subject to electric forces. An electron moving in the +x direction accelerates from an initial velocity of +7.31 x 105 m/s to a final velocity of 1.98 x 106 m/s while traveling a distance of 0.0545 m. The electron's acceleration is due to two electric forces parallel to the x axis: F₁ = 7.52 x 10-¹7 N, and F2, which points in the -x direction. Find the magnitudes of (a) the net force acting on the electron and (b) the electric force F2. F₁ F₁ F₂ F₁ (a) Number i (b) Number i VO X Units Unitsarrow_forward
- An object of mass 0.61 kg is initially at rest. When a force acts on it for 2.9 ms it acquires a speed of 12.7 m/s. Find the magnitude (in N) of the average force acting on the object during the 2.9 ms time interval.arrow_forwardAn electron is a subatomic particle (m= 9.11 x 10-31 kg) that is subject to electric forces. An electron moving in the +x direction accelerates from an initial velocity of +6.34 x 105 m/s to a final velocity of 1.30 x 106 m/s while traveling a distance of 0.0295 m. The electron's acceleration is due to two electric forces parallel to the x axis: F₁ = 9.54 x 10-17 N, and F2, which points in the -x direction. Find the magnitudes of (a) the net force acting on the electron and (b) the electric force F2. F₂₁ F₂ F₁ (a) Number i (b) Number i Units Units +arrow_forwardA 781 N sprinter can push his feet back against the starting blocks with a force of 1852 N in the horizontal direction. If the force is generated for 0.28 s, determine the horizontal velocity of the runner out of the blocks. Include magnitude and direction when reporting vectors.arrow_forward
- An electron is a subatomic particle (m = 9.11 x 10-31 kg) that is subject to electric forces. An electron moving in the +x direction accelerates from an initial velocity of +6.88 x 105 m/s to a final velocity of 2.30 x 106 m/s while traveling a distance of 0.0685 m. The electron's acceleration is due to two electric forces parallel to the x axis: F₁ = 7.84 x 10-17 N, and F2, which points in the -x direction. Find the magnitudes of (a) the net force acting on the electron and (b) the electric force F2. F₂ F₁ VO (a) Number i ! Units N (b) Number Units N eTextbook and Media -> C Σ > F2 F₁ וום 1 0> Assistance Usedarrow_forwardAn electron is a subatomic particle (m = 9.11 x 10-31 kg) that is subject to electric forces. An electron moving in the +x direction accelerates from an initial velocity of +6.88 x 105 m/s to a final velocity of 2.30 x 106 m/s while traveling a distance of 0.0685 m. The electron's acceleration is due to two electric forces parallel to the x axis: F₁ = 7.84 x 10-17 N, and F2, which points in the -x direction. Find the magnitudes of (a) the net force acting on the electron and (b) the electric force F2. (a) Number (b) Number i eTextbook and Media Hint F₂ F₁ ! Units N Units N M ון! > F₁arrow_forwardA clever coyote uses rocket powered skates to try to catch a roadrunner. The mass of the coyote is 38.1 kg. If the coyote starts from rest, and accelerates to a final speed of 26 m/s in a distance of 2.4 m, how much thrust force did the rockets excert to get him to his final speed? Assume this thrust is constant over the 2.4 m.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Newton's Third Law of Motion: Action and Reaction; Author: Professor Dave explains;https://www.youtube.com/watch?v=y61_VPKH2B4;License: Standard YouTube License, CC-BY