CALC A Variable-Mass Raindrop. In a rocket-propulsion problem the mass is variable. Another such problem is a raindrop falling through a cloud of small water droplets. Some of these small droplets adhere to the raindrop, thereby increasing its mass as it falls. The force on the raindrop is F ext = d p d t = m d υ d t + υ d m d t Suppose the mass of the raindrop depends on the distance x that it has fallen. Then m = kx , where k is a constant, and dm/dt = kυ . This gives, since F ext = mg , m g = m d υ d t + υ ( k υ ) Or, dividing by k , x g = x d υ d t + υ 2 This is a differential equation that has a solution of the form υ = at , where a is the acceleration and is constant. Take the initial velocity of the raindrop to be zero, (a) Using the proposed solution for v , find the acceleration a . (b) Find the distance the rain-drop has fallen in t = 3.00 s. (c) Given that k = 2.00 g/m, find the mass of the raindrop at t = 3.00 s. (For many more intriguing aspects of this problem, see K. S. Krane, American Journal of Physics , Vol. 49 (1981), pp. 113–117.)
CALC A Variable-Mass Raindrop. In a rocket-propulsion problem the mass is variable. Another such problem is a raindrop falling through a cloud of small water droplets. Some of these small droplets adhere to the raindrop, thereby increasing its mass as it falls. The force on the raindrop is F ext = d p d t = m d υ d t + υ d m d t Suppose the mass of the raindrop depends on the distance x that it has fallen. Then m = kx , where k is a constant, and dm/dt = kυ . This gives, since F ext = mg , m g = m d υ d t + υ ( k υ ) Or, dividing by k , x g = x d υ d t + υ 2 This is a differential equation that has a solution of the form υ = at , where a is the acceleration and is constant. Take the initial velocity of the raindrop to be zero, (a) Using the proposed solution for v , find the acceleration a . (b) Find the distance the rain-drop has fallen in t = 3.00 s. (c) Given that k = 2.00 g/m, find the mass of the raindrop at t = 3.00 s. (For many more intriguing aspects of this problem, see K. S. Krane, American Journal of Physics , Vol. 49 (1981), pp. 113–117.)
CALC A Variable-Mass Raindrop. In a rocket-propulsion problem the mass is variable. Another such problem is a raindrop falling through a cloud of small water droplets. Some of these small droplets adhere to the raindrop, thereby increasing its mass as it falls. The force on the raindrop is
F
ext
=
d
p
d
t
=
m
d
υ
d
t
+
υ
d
m
d
t
Suppose the mass of the raindrop depends on the distance x that it has fallen. Then m = kx, where k is a constant, and dm/dt = kυ. This gives, since Fext = mg,
m
g
=
m
d
υ
d
t
+
υ
(
k
υ
)
Or, dividing by k,
x
g
=
x
d
υ
d
t
+
υ
2
This is a differential equation that has a solution of the form υ = at, where a is the acceleration and is constant. Take the initial velocity of the raindrop to be zero, (a) Using the proposed solution for v, find the acceleration a. (b) Find the distance the rain-drop has fallen in t = 3.00 s. (c) Given that k = 2.00 g/m, find the mass of the raindrop at t = 3.00 s. (For many more intriguing aspects of this problem, see K. S. Krane, American Journal of Physics, Vol. 49 (1981), pp. 113–117.)
14
Z
In figure, a closed surface with q=b=
0.4m/
C =
0.6m
if the left edge
of the closed surface at position X=a,
if E is non-uniform and is given by
€ = (3 + 2x²) ŷ N/C, calculate the
(3+2x²)
net electric flux leaving the closed
surface.
No chatgpt pls will upvote
suggest a reason ultrasound cleaning is better than cleaning by hand?
Chapter 8 Solutions
University Physics with Modern Physics (14th Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.