CALC A Variable-Mass Raindrop. In a rocket-propulsion problem the mass is variable. Another such problem is a raindrop falling through a cloud of small water droplets. Some of these small droplets adhere to the raindrop, thereby increasing its mass as it falls. The force on the raindrop is F ext = d p d t = m d υ d t + υ d m d t Suppose the mass of the raindrop depends on the distance x that it has fallen. Then m = kx , where k is a constant, and dm/dt = kυ . This gives, since F ext = mg , m g = m d υ d t + υ ( k υ ) Or, dividing by k , x g = x d υ d t + υ 2 This is a differential equation that has a solution of the form υ = at , where a is the acceleration and is constant. Take the initial velocity of the raindrop to be zero, (a) Using the proposed solution for v , find the acceleration a . (b) Find the distance the rain-drop has fallen in t = 3.00 s. (c) Given that k = 2.00 g/m, find the mass of the raindrop at t = 3.00 s. (For many more intriguing aspects of this problem, see K. S. Krane, American Journal of Physics , Vol. 49 (1981), pp. 113–117.)
CALC A Variable-Mass Raindrop. In a rocket-propulsion problem the mass is variable. Another such problem is a raindrop falling through a cloud of small water droplets. Some of these small droplets adhere to the raindrop, thereby increasing its mass as it falls. The force on the raindrop is F ext = d p d t = m d υ d t + υ d m d t Suppose the mass of the raindrop depends on the distance x that it has fallen. Then m = kx , where k is a constant, and dm/dt = kυ . This gives, since F ext = mg , m g = m d υ d t + υ ( k υ ) Or, dividing by k , x g = x d υ d t + υ 2 This is a differential equation that has a solution of the form υ = at , where a is the acceleration and is constant. Take the initial velocity of the raindrop to be zero, (a) Using the proposed solution for v , find the acceleration a . (b) Find the distance the rain-drop has fallen in t = 3.00 s. (c) Given that k = 2.00 g/m, find the mass of the raindrop at t = 3.00 s. (For many more intriguing aspects of this problem, see K. S. Krane, American Journal of Physics , Vol. 49 (1981), pp. 113–117.)
CALC A Variable-Mass Raindrop. In a rocket-propulsion problem the mass is variable. Another such problem is a raindrop falling through a cloud of small water droplets. Some of these small droplets adhere to the raindrop, thereby increasing its mass as it falls. The force on the raindrop is
F
ext
=
d
p
d
t
=
m
d
υ
d
t
+
υ
d
m
d
t
Suppose the mass of the raindrop depends on the distance x that it has fallen. Then m = kx, where k is a constant, and dm/dt = kυ. This gives, since Fext = mg,
m
g
=
m
d
υ
d
t
+
υ
(
k
υ
)
Or, dividing by k,
x
g
=
x
d
υ
d
t
+
υ
2
This is a differential equation that has a solution of the form υ = at, where a is the acceleration and is constant. Take the initial velocity of the raindrop to be zero, (a) Using the proposed solution for v, find the acceleration a. (b) Find the distance the rain-drop has fallen in t = 3.00 s. (c) Given that k = 2.00 g/m, find the mass of the raindrop at t = 3.00 s. (For many more intriguing aspects of this problem, see K. S. Krane, American Journal of Physics, Vol. 49 (1981), pp. 113–117.)
1. Two pendula of slightly different length oscillate next to each other. The short one
oscillates with frequency 0.52 Hz and the longer one with frequency 0.50 Hz. If
they start of in phase determine their phase difference after 75 s.
A mass is connect to a vertical revolving axle by two strings of length L, each making an angle of 45 degrees with the axle, as shown. Both the axle and mass are revolving with angular velocity w, Gravity is directed downward. The tension in the upper string is T_upper and the tension in the lower string is T_lower.Draw a clear free body diagram for mass m. Please include real forces only.Find the tensions in the upper and lower strings, T_upper and T_lower
2. A stone is dropped into a pool of water causing ripple to spread out. After 10 s
the circumference of the ripple is 20 m. Calculate the velocity of the wave.
Chapter 8 Solutions
University Physics with Modern Physics (14th Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.