Concept explainers
(a)
Interpretation: The pH of the solution before addition of KOH needs to be determined.
Concept Introduction: The acid dissociation reaction of
The acid dissociation constant for the above three reactions will be
(a)

Explanation of Solution
Before KOH is added, the pH of the solution depends on concentration of acid.
The first dissociation of
The given concentration of
The first acid dissociation constant can be represented as follows:
Or,
On solving,
This is the concentration of hydrogen ion in the solution. Thus, pH can be calculated as follows:
(b)
Interpretation: The pH of the solution after addition of 10 mL of 0.1 M KOH needs to be determined.
Concept Introduction: The acid dissociation reaction of
The acid dissociation constant for the above three reactions will be
(b)

Explanation of Solution
The number of moles of
Now, hydroxide ion will react with
Thus,
Thus, the amount of
The total volume will be 110 mL thus, concentration can be calculated as follows:
The ICE table can be prepared as follows:
The equilibrium expression can be represented as follows:
Or,
On solving,
The pH of the solution will be:
(c)
Interpretation: The pH of the solution after addition of 25 mL of 0.1 M KOH needs to be determined.
Concept Introduction: The acid dissociation reaction of
The acid dissociation constant for the above three reactions will be
(c)

Explanation of Solution
The molar amount of hydroxide ion initially present can be calculated as follows:
The reaction of hydroxide ion and H3X to produce
Thus, the amount of H3X left can be calculated as follows:
The concentration of H3X is equal to concentration of
(d)
Interpretation: The pH of the solution after addition of 50 mL of 0.1 M KOH needs to be determined.
Concept Introduction: The acid dissociation reaction of
The acid dissociation constant for the above three reactions will be
(d)

Explanation of Solution
The number of moles of hydroxide ion can be calculated as follows:
The hydrogen ion reacts with H3X and the amount is equal to that of hydroxide ion.
The remaining amount of H3X will be:
Now, all the acid exists as
The pH can be calculated as follows:
(e)
Interpretation: The pH of the solution after addition of 60 mL of 0.1 M KOH needs to be determined.
Concept Introduction: The acid dissociation reaction of
The acid dissociation constant for the above three reactions will be
(e)

Explanation of Solution
The number of moles of hydroxide ion can be calculated as follows:
Initially 5 mmol of hydroxide ion react with H3X and the remaining will react to with
The amount of
The molarity can be calculated as follows:
Also, the molarity of
The ICE table can be prepared as follows:
The expression for
The
This is the concentration of hydrogen ion.
The pH value can be calculated as follows:
(f)
Interpretation: The pH of the solution after addition of 75 mL of 0.1 M KOH needs to be determined.
Concept Introduction: The acid dissociation reaction of
The acid dissociation constant for the above three reactions will be
(f)

Explanation of Solution
The number of moles of hydroxide ion can be calculated as follows:
Initially 5 mmol of hydroxide ion react with H3X and the remaining will react to with
Thus, the amount of
Here, the concentration of
Thus, pH value can be calculated as follows:
(g)
Interpretation: The pH of the solution after addition of 100 mL of 0.1 M KOH needs to be determined.
Concept Introduction: The acid dissociation reaction of
The acid dissociation constant for the above three reactions will be
(g)

Explanation of Solution
The initial number of moles of hydroxide ion can be calculated as follows:
Initially 5 mmol of hydroxide ion react with H3X and the remaining will react to with
The amount of
Now, only
The pH can be calculated as follows:
Putting the values,
(h)
Interpretation: The pH of the solution after addition of 125 mL of 0.1 M KOH needs to be determined.
Concept Introduction: The acid dissociation reaction of
The acid dissociation constant for the above three reactions will be
(h)

Explanation of Solution
The initial number of moles of hydroxide ion can be calculated as follows:
Initially 5 mmol of hydroxide ion react with H3X and the remaining will react to with
The remaining hydroxide ion will react to form
The amount of
The molarity can be calculated as follows:
Similarly, for
This is third equivalence point and the ICE table can be represented as follows:
The base dissociation constant can be represented as follows:
The equation will be:
On solving, the value of x will be:
This is concentration of hydroxide ion, the pH value can be calculated as follows:
Putting the values,
(i)
Interpretation: The pH of the solution after addition of 150 mL of 0.1 M KOH needs to be determined.
Concept Introduction: The acid dissociation reaction of
The acid dissociation constant for the above three reactions will be
(i)

Explanation of Solution
The hydrogen ion concentration in the beginning can be calculated as follows:
Initially 5 mmol of hydroxide ion react with H3X and the remaining will react with
The remaining hydroxide ion will react to form
The amount of
The molarity for
The ICE tale will be:
The base dissociation constant can be represented as follows:
The equation will be:
On solving, the value of x will be:
This is concentration of hydroxide ion, the pH value can be calculated as follows:
Putting the values,
(j)
Interpretation: The pH of the solution after addition of 200 mL of 0.1 M KOH needs to be determined.
Concept Introduction: The acid dissociation reaction of
The acid dissociation constant for the above three reactions will be
(j)

Explanation of Solution
The hydrogen ion concentration in the beginning can be calculated as follows:
Now, to convert
The remaining number of moles of hydroxide ion will be 5 mmol.
The molarity of
The reaction of hydroxide ion with
The base dissociation constant can be represented as follows:
The equation will be:
On solving, the value of x will be:
The hydroxide ion concentration will be:
This is concentration of hydroxide ion, the pH value can be calculated as follows:
Putting the values,
Want to see more full solutions like this?
Chapter 8 Solutions
WebAssign for Zumdahl's Chemical Principles, 8th Edition [Instant Access], Single-Term
- Understanding how substituents activate Rank each of the following substituted benzene molecules in order of which will react fastest (1) to slowest (4) by electrophilic aromatic substitution. Explanation HN NH2 Check X (Choose one) (Choose one) (Choose one) (Choose one) © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center Aarrow_forwardIdentifying electron-donating and electron-withdrawing effects on benzene For each of the substituted benzene molecules below, determine the inductive and resonance effects the substituent will have on the benzene ring, as well as the overall electron-density of the ring compared to unsubstituted benzene. Inductive Effects Resonance Effects Overall Electron-Density Molecule CF3 O donating O donating O withdrawing O withdrawing O no inductive effects O no resonance effects electron-rich electron-deficient O similar to benzene CH3 O donating O withdrawing O no inductive effects O donating O withdrawing Ono resonance effects O electron-rich O electron-deficient O similar to benzene Explanation Check Х © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Centerarrow_forward* Hint: Think back to Chem 1 solubility rules. Follow Up Questions for Part B 12. What impact do the following disturbances to a system at equilibrium have on k, the rate constant for the forward reaction? Explain. (4 pts) a) Changing the concentration of a reactant or product. (2 pts) b) Changing the temperature of an exothermic reaction. (2 pts) ofarrow_forward
- Draw TWO general chemical equation to prepare Symmetrical and non-Symmetrical ethers Draw 1 chemical reaction of an etherarrow_forwardPlease help me with the following questions for chemistry.arrow_forwardDraw the chemical structure [OR IUPAC name] of the following: a- m-chloromethoxybenzene b.arrow_forward
- Show by chemical equation the reaction of [HCN] and [CH3MgBr] with any alarrow_forwardGive the chemical equation for the preparation of: -Any aldehyde -Any keytonearrow_forward+ C8H16O2 (Fatty acid) + 11 02 → 8 CO2 a. Which of the above are the reactants? b. Which of the above are the products? H2o CO₂ c. Which reactant is the electron donor? Futty acid d. Which reactant is the electron acceptor? e. Which of the product is now reduced? f. Which of the products is now oxidized? 02 #20 102 8 H₂O g. Where was the carbon initially in this chemical reaction and where is it now that it is finished? 2 h. Where were the electrons initially in this chemical reaction and where is it now that it is finished?arrow_forward
- → Acetyl-CoA + 3NAD+ + 1FAD + 1ADP 2CO2 + CoA + 3NADH + 1FADH2 + 1ATP a. Which of the above are the reactants? b. Which of the above are the products? c. Which reactant is the electron donor? d. Which reactants are the electron acceptors? e. Which of the products are now reduced? f. Which product is now oxidized? g. Which process was used to produce the ATP? h. Where was the energy initially in this chemical reaction and where is it now that it is finished? i. Where was the carbon initially in this chemical reaction and where is it now that it is finished? j. Where were the electrons initially in this chemical reaction and where is it now that it is finished?arrow_forwardRank each of the following substituted benzene molecules in order of which will react fastest (1) to slowest (4) by electrophilic aromatic substitution. OCH 3 (Choose one) OH (Choose one) Br (Choose one) Explanation Check NO2 (Choose one) © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Aarrow_forwardFor each of the substituted benzene molecules below, determine the inductive and resonance effects the substituent will have on the benzene ring, as well as the overall electron-density of the ring compared to unsubstituted benzene. Molecule Inductive Effects O donating O withdrawing O no inductive effects Resonance Effects Overall Electron-Density ○ donating ○ withdrawing O no resonance effects O electron-rich O electron-deficient O similar to benzene Cl O donating O withdrawing ○ donating ○ withdrawing O no inductive effects O no resonance effects O Explanation Check O electron-rich O electron-deficient similar to benzene X © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessarrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning





