Concept explainers
(a)
Interpretation: The pH of the solution needs to be calculated when 0 mL of KOH is added to given solution.
Concept Introduction: The relation between molarity, number of moles and volume of solution is as follows:
Here, n is number of moles and V is volume of the solution.
(a)

Explanation of Solution
In the given solution, HCN is a weak acid and KOH is strong base. Molarity of HCN is 0.1 M and volume is 100 mL.
The acid dissociation constant of HCN is
The number of moles of HCN can be calculated using molarity and volume as follows:
When 0 mL of KOH is added, the solution only contains a weak acid.
The equilibrium reaction for the dissociation of HCN is represented as follows:
The expression for equilibrium constant will be:
The ICE table for the reaction can be represented as follows:
The value of x can be neglected from equilibrium constant of HCN as the dissociation constant is very small.
Thus,
The equilibrium concentration of hydrogen ion is
Now, the pH of solution can be calculated as follows:
Thus, the pH of the solution when 0.0 mL of KOH added is 5.1.
(b)
Interpretation: The pH of the solution needs to be calculated when 50 mL of KOH is added to given solution.
Concept Introduction: The relation between molarity, number of moles and volume of solution is as follows:
Here, n is number of moles and V is volume of the solution.
(b)

Explanation of Solution
When 50 mL of KOH is added the number of moles of hydroxide ion can be calculated as follows:
Here, 5.00 mmol of KOH reacts completely with 5.00 mmol of HCN. The ICE table can be represented as follows:
The remaining solution will become a buffer solution. The
Since, volume is same for both thus,
Thus, the pH of the solution when 50.0 mL of KOH is added to 100 0 mL of HCN is 9.2.
(c)
Interpretation: The pH of the solution needs to be calculated when 75 mL of KOH is added to given solution.
Concept Introduction: The relation between molarity, number of moles and volume of solution is as follows:
Here, n is number of moles and V is volume of the solution.
(c)

Explanation of Solution
The number of moles of HCN initially present is 10 mmol. Now, number of moles of 75 mL hydroxide ion can be calculated as follows:
Now, 7.50 mmol of KOH reacts with 7.50 mmol of HCN. The number of moles of HCl remaining will be 10-7.5=2.5 mmol and the number of moles of CN- formed will be 7.50 mmol.
The pH of solution can be calculated as follows:
Thus, pH of the solution after addition of 75.0 mL KOH is 9.7.
(d)
Interpretation: The pH of the solution needs to be calculated at equivalence point.
Concept Introduction: The relation between molarity, number of moles and volume of solution is as follows:
Here, n is number of moles and V is volume of the solution.
(d)

Explanation of Solution
At the equivalence point, the number of moles of HCN added and KOH is same. Thus, the number of moles of KOH added will be 10 mmol. The volume of KOH added can be calculated from number of moles and molarity as follows:
If equal moles react thus, the number of moles of
The total volume will be sum of volume of HCl and KOH as follows:
For 10.0 mmol, the molarity can be calculated as follows:
The ICE table can be represented as follows:
The hydrolysis of
The hydrolysis constant value for
For the above reaction, the expression can be represented as follows:
The above value of x is equal to the concentration of hydroxide ion in the solution. Thus, the pH of the solution can be calculated as follows:
Thus, the pH of solution at equivalence point is 10.95.
(e)
Interpretation: The pH of the solution needs to be calculated when 125 mL of KOH is added to given solution.
Concept Introduction: The relation between molarity, number of moles and volume of solution is as follows:
Here, n is number of moles and V is volume of the solution.
(e)

Explanation of Solution
The number of moles of KOH can be calculated as follows:
Here, 10.0 mmol of KOH reacts with 10.0 mmol of HCN thus, the remaining number of moles of KOH will be 2.5 mmol.
Also, 10.0 mmol of
The molarity of KOH can be calculated as follows:
The pOH of the solution can be calculated by taking negative log of hydroxide ion conecntartion.
The pH of the solution can be calculated as follows:
Thus, the pH of the solution is 12.04.
Want to see more full solutions like this?
Chapter 8 Solutions
WebAssign for Zumdahl's Chemical Principles, 8th Edition [Instant Access], Single-Term
- What is the IUPAC name of the following compound? CH₂CH₂ H CI H₂CH₂C H CH₂ Selected Answer: O (35,4R)-4 chloro-3-ethylpentane Correctarrow_forwardCurved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electrons-pushing arrows for the following reaction or mechanistic step(s).arrow_forwardCurved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s). Be sure to account for all bond-breaking and bond-making steps. I I I H Select to Add Arrows HCI, CH3CH2OHarrow_forward
- Curved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and the follow the arrows to draw the intermediate and product in this reaction or mechanistic step(s).arrow_forwardCurved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and follow the curved arrows to draw the intermediates and product of the following reaction or mechanistic step(s).arrow_forwardCurved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and follow the arrows to draw the intermediate and the product in this reaction or mechanistic step(s).arrow_forward
- Look at the following pairs of structures carefully to identify them as representing a) completely different compounds, b) compounds that are structural isomers of each other, c) compounds that are geometric isomers of each other, d) conformers of the same compound (part of structure rotated around a single bond) or e) the same structure.arrow_forwardGiven 10.0 g of NaOH, what volume of a 0.100 M solution of H2SO4 would be required to exactly react all the NaOH?arrow_forward3.50 g of Li are combined with 3.50 g of N2. What is the maximum mass of Li3N that can be produced? 6 Li + N2 ---> 2 Li3Narrow_forward
- 3.50 g of Li are combined with 3.50 g of N2. What is the maximum mass of Li3N that can be produced? 6 Li + N2 ---> 2 Li3Narrow_forwardConcentration Trial1 Concentration of iodide solution (mA) 255.8 Concentration of thiosulfate solution (mM) 47.0 Concentration of hydrogen peroxide solution (mM) 110.1 Temperature of iodide solution ('C) 25.0 Volume of iodide solution (1) used (mL) 10.0 Volume of thiosulfate solution (5:03) used (mL) Volume of DI water used (mL) Volume of hydrogen peroxide solution (H₂O₂) used (mL) 1.0 2.5 7.5 Time (s) 16.9 Dark blue Observations Initial concentration of iodide in reaction (mA) Initial concentration of thiosulfate in reaction (mA) Initial concentration of hydrogen peroxide in reaction (mA) Initial Rate (mA's)arrow_forwardDraw the condensed or line-angle structure for an alkene with the formula C5H10. Note: Avoid selecting cis-/trans- isomers in this exercise. Draw two additional condensed or line-angle structures for alkenes with the formula C5H10. Record the name of the isomers in Data Table 1. Repeat steps for 2 cyclic isomers of C5H10arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning





