(a)
Interpretation:
The characteristic of dispersed phase not being trapped by filter paper applies to whether a true solution, a colloidal dispersion, or a suspension has to be indicated.
Concept Introduction:
- It is a homogeneous mixture of two or more solutes and solvent.
- It is composed of particles having diameters less than one nanometer.
- Through filtration, solute particles cannot be obtained.
Colloidal dispersion:
- It is a heterogeneous system formed of a dispersed phase and a dispersion medium.
- It is composed of particles having diameters from one-hundred nanometers.
- Particles do not diffuse through parchment paper, but easily diffuse through filter paper.
Suspension:
- It is a mixture in which the solute does not get dissolved, but will be suspended in the liquid and float freely.
- The nature of solution will be heterogeneous.
- It is composed of particles having diameters greater than 1000 nanometers.
- Particles do not diffuse through parchment paper or through filter paper.
(b)
Interpretation:
The characteristic of dispersed phase settles immediately under the influence of gravity applies to whether a true solution, a colloidal dispersion, or a suspension has to be indicated.
Concept Introduction:
- It is a homogeneous mixture of two or more solutes and solvent.
- It is composed of particles having diameters less than one nanometer.
- Through filtration, solute particles cannot be obtained.
Colloidal dispersion:
- It is a heterogeneous system formed of a dispersed phase and a dispersion medium.
- It is composed of particles having diameters from one-hundred nanometers.
- Particles do not diffuse through parchment paper, but easily diffuse through filter paper.
Suspension:
- It is a mixture in which the solute does not get dissolved, but will be suspended in the liquid and float freely.
- The nature of solution will be heterogeneous.
- It is composed of particles having diameters greater than 1000 nanometers.
- Particles do not diffuse through parchment paper or through filter paper.
(c)
Interpretation:
The characteristic of dispersed phase scatters light applies to whether a true solution, a colloidal dispersion, or a suspension has to be indicated.
Concept Introduction:
- It is a homogeneous mixture of two or more solutes and solvent.
- It is composed of particles having diameters less than one nanometer.
- Through filtration, solute particles cannot be obtained.
Colloidal dispersion:
- It is a heterogeneous system formed of a dispersed phase and a dispersion medium.
- It is composed of particles having diameters from one-hundred nanometers.
- Particles do not diffuse through parchment paper, but easily diffuse through filter paper.
Suspension:
- It is a mixture in which the solute does not get dissolved, but will be suspended in the liquid and float freely.
- The nature of solution will be heterogeneous.
- It is composed of particles having diameters greater than 1000 nanometers.
- Particles do not diffuse through parchment paper or through filter paper.
(d)
Interpretation:
The characteristic of large particles present in dispersed phase applies to whether a true solution, a colloidal dispersion, or a suspension has to be indicated.
Concept Introduction:
- It is a homogeneous mixture of two or more solutes and solvent.
- It is composed of particles having diameters less than one nanometer.
- Through filtration, solute particles cannot be obtained.
Colloidal dispersion:
- It is a heterogeneous system formed of a dispersed phase and a dispersion medium.
- It is composed of particles having diameters from one-hundred nanometers.
- Particles do not diffuse through parchment paper, but easily diffuse through filter paper.
Suspension:
- It is a mixture in which the solute does not get dissolved, but will be suspended in the liquid and float freely.
- The nature of solution will be heterogeneous.
- It is composed of particles having diameters greater than 1000 nanometers.
- Particles do not diffuse through parchment paper or through filter paper.

Trending nowThis is a popular solution!

Chapter 8 Solutions
EBK GENERAL, ORGANIC, AND BIOLOGICAL CH
- "One of the symmetry breaking events in mouse gastrulation requires the amplification of Nodal on the side of the embryo opposite to the Anterior Visceral Endoderm (AVE). Describe one way by which Nodal gets amplified in this region." My understanding of this is that there are a few ways nodal is amplified though I'm not sure if this is specifically occurs on the opposite side of the AVE. 1. pronodal cleaved by protease -> active nodal 2. Nodal -> BMP4 -> Wnt-> nodal 3. Nodal-> Nodal, Fox1 binding site 4. BMP4 on outside-> nodal Are all of these occuring opposite to AVE?arrow_forwardIf four babies are born on a given day What is the chance all four will be girls? Use genetics lawsarrow_forwardExplain each punnet square results (genotypes and probabilities)arrow_forward
- Give the terminal regression line equation and R or R2 value: Give the x axis (name and units, if any) of the terminal line: Give the y axis (name and units, if any) of the terminal line: Give the first residual regression line equation and R or R2 value: Give the x axis (name and units, if any) of the first residual line : Give the y axis (name and units, if any) of the first residual line: Give the second residual regression line equation and R or R2 value: Give the x axis (name and units, if any) of the second residual line: Give the y axis (name and units, if any) of the second residual line: a) B1 Solution b) B2 c)hybrid rate constant (λ1) d)hybrid rate constant (λ2) e) ka f) t1/2,absorb g) t1/2, dist h) t1/2, elim i)apparent central compartment volume (V1,app) j) total AUC (short cut method) k) apparent volume of distribution based on AUC (VAUC,app) l)apparent clearance (CLapp) m) absolute bioavailability of oral route (need AUCiv…arrow_forwardYou inject morpholino oligonucleotides that inhibit the translation of follistatin, chordin, and noggin (FCN) at the 1 cell stage of a frog embryo. What is the effect on neurulation in the resulting embryo? Propose an experiment that would rescue an embryo injected with FCN morpholinos.arrow_forwardParticipants will be asked to create a meme regarding a topic relevant to the department of Geography, Geomatics, and Environmental Studies. Prompt: Using an online art style of your choice, please make a meme related to the study of Geography, Environment, or Geomatics.arrow_forward
- Plekhg5 functions in bottle cell formation, and Shroom3 functions in neural plate closure, yet the phenotype of injecting mRNA of each into the animal pole of a fertilized egg is very similar. What is the phenotype, and why is the phenotype so similar? Is the phenotype going to be that there is a disruption of the formation of the neural tube for both of these because bottle cell formation is necessary for the neural plate to fold in forming the neural tube and Shroom3 is further needed to close the neural plate? So since both Plekhg5 and Shroom3 are used in forming the neural tube, injecting the mRNA will just lead to neural tube deformity?arrow_forwardWhat are some medical issues or health trends that may have a direct link to the idea of keeping fat out of diets?arrow_forwardwhat did charles darwin do in sciencearrow_forward
- Concepts of BiologyBiologyISBN:9781938168116Author:Samantha Fowler, Rebecca Roush, James WisePublisher:OpenStax College
- Biology Today and Tomorrow without Physiology (Mi...BiologyISBN:9781305117396Author:Cecie Starr, Christine Evers, Lisa StarrPublisher:Cengage Learning

