
Concept explainers
Review. In 1887 in Bridgeport, Connecticut, C. J. Belknap built the water slide shown in Figure P8.77. A rider on a small sled, of total mass 80.0 kg, pushed off to start at the top of the slide (point Ⓐ) with a speed of 2.50 m/s. The chute was 9.76 m high at the top and 543 m long. Along its length, 72.5 small wheels made friction negligible. Upon leaving the chute horizon-tally at its bottom end (point ©), the rider skimmed across the water of Long Island Sound for as much as 50 m, “skipping along like a flat pebble,” before at last coming to rest and swimming ashore, pulling his sled after him. (a) Find the speed of the sled and rider at point © (b) Model the force of water friction as a constant retarding force acting on a particle. Find the magnitude of the
(a)

The speed of the sled and rider at point
Answer to Problem 8.77AP
The speed of the sled and rider at point
Explanation of Solution
Given info: The speed at point
The formula to calculate the kinetic energy at point
Here,
The formula to calculate the initial gravitational potential energy at point
Here,
The formula to calculate the gravitational potential energy at point
Here,
The formula to calculate the kinetic energy at point
Here,
The formula to calculate the energy at point
Here,
Substitute
The formula to calculate the energy at point
Here,
Substitute
Apply the law of conservation of energy at point
Here,
Substitute
Rearrange the above formula for
Substitute
Take the approximation.
Conclusion:
Therefore, the speed of the sled and rider at point
(b)

The magnitude of the friction force the water exerts on the sled.
Answer to Problem 8.77AP
The magnitude of the friction force the water exerts on the sled is
Explanation of Solution
Given info: The speed at point
The free body diagram is shown below.
Figure II
The formula to calculate the work done by the friction force at point
Here,
The formula to calculate the energy at point
Here,
Substitute
The formula to calculate the energy at point
Here,
Substitute
Apply the law of conservation of energy at point
Here,
Substitute
Rearrange the above formula for
Substitute
Thus, the value of work done by the frictional force is
From the above figure, the displacement is
Substitute
Thus, the frictional force acts on point
The formula to calculate the normal force is,
Here,
Substitute
Thus, the value of normal force is
The formula to calculate the magnitude of the force the water exerts on the sled is,
Here,
Substitute
Conclusion:
Therefore, the magnitude of the friction force the water exerts on the sled is
(c)

The magnitude of the force the chute exerts on the sled at point
Answer to Problem 8.77AP
The magnitude of the force the chute exerts on the sled at point
Explanation of Solution
Given info: The speed at point
From the above figure,
The formula to calculate the force exerted by the weight of the chute is,
Here,
The formula to calculate the force acting at point
Here,
The acceleration is 0 at point
The formula to calculate the force at the point
Here,
Substitute
Substitute
Conclusion:
Therefore, the magnitude of the force the chute exerts on the sled at point
(c)

The magnitude of the force the chute exerts on the sled at point
Answer to Problem 8.77AP
The magnitude of the force the chute exerts on the sled at point
Explanation of Solution
Given info: The speed at point
From the above figure,
The formula to calculate the centripetal force exerted at point
Here,
The formula to calculate the weight of chute at point
Here,
The formula to calculate the force at the point
Here,
Substitute
Substitute
Conclusion:
Therefore, the magnitude of the force the chute exerts on the sled at point
Want to see more full solutions like this?
Chapter 8 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
- No chatgpt pls will upvotearrow_forwardNo chatgpt pls will upvote instantarrow_forwardKirchoff's Laws. A circuit contains 3 known resistors, 2 known batteries, and 3 unknown currents as shown. Assume the current flows through the circuit as shown (this is our initial guess, the actual currents may be reverse). Use the sign convention that a potential drop is negative and a potential gain is positive. E₂ = 8V R₁₁ = 50 R₂ = 80 b с w 11 www 12 13 E₁ = 6V R3 = 20 a) Apply Kirchoff's Loop Rule around loop abefa in the clockwise direction starting at point a. (2 pt). b) Apply Kirchoff's Loop Rule around loop bcdeb in the clockwise direction starting at point b. (2 pt). c) Apply Kirchoff's Junction Rule at junction b (1 pt). d) Solve the above 3 equations for the unknown currents I1, 12, and 13 and specify the direction of the current around each loop. (5 pts) I1 = A 12 = A 13 = A Direction of current around loop abef Direction of current around loop bcde (CW or CCW) (CW or CCW)arrow_forward
- No chatgpt pls will upvotearrow_forward4.) The diagram shows the electric field lines of a positively charged conducting sphere of radius R and charge Q. A B Points A and B are located on the same field line. A proton is placed at A and released from rest. The magnitude of the work done by the electric field in moving the proton from A to B is 1.7×10-16 J. Point A is at a distance of 5.0×10-2m from the centre of the sphere. Point B is at a distance of 1.0×10-1 m from the centre of the sphere. (a) Explain why the electric potential decreases from A to B. [2] (b) Draw, on the axes, the variation of electric potential V with distance r from the centre of the sphere. R [2] (c(i)) Calculate the electric potential difference between points A and B. [1] (c(ii)) Determine the charge Q of the sphere. [2] (d) The concept of potential is also used in the context of gravitational fields. Suggest why scientists developed a common terminology to describe different types of fields. [1]arrow_forward3.) The graph shows how current I varies with potential difference V across a component X. 904 80- 70- 60- 50- I/MA 40- 30- 20- 10- 0+ 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 VIV Component X and a cell of negligible internal resistance are placed in a circuit. A variable resistor R is connected in series with component X. The ammeter reads 20mA. 4.0V 4.0V Component X and the cell are now placed in a potential divider circuit. (a) Outline why component X is considered non-ohmic. [1] (b(i)) Determine the resistance of the variable resistor. [3] (b(ii)) Calculate the power dissipated in the circuit. [1] (c(i)) State the range of current that the ammeter can measure as the slider S of the potential divider is moved from Q to P. [1] (c(ii)) Describe, by reference to your answer for (c)(i), the advantage of the potential divider arrangement over the arrangement in (b).arrow_forward
- 1.) Two long parallel current-carrying wires P and Q are separated by 0.10 m. The current in wire P is 5.0 A. The magnetic force on a length of 0.50 m of wire P due to the current in wire Q is 2.0 × 10-s N. (a) State and explain the magnitude of the force on a length of 0.50 m of wire Q due to the current in P. [2] (b) Calculate the current in wire Q. [2] (c) Another current-carrying wire R is placed parallel to wires P and Q and halfway between them as shown. wire P wire R wire Q 0.05 m 0.05 m The net magnetic force on wire Q is now zero. (c.i) State the direction of the current in R, relative to the current in P.[1] (c.ii) Deduce the current in R. [2]arrow_forward2.) A 50.0 resistor is connected to a cell of emf 3.00 V. The voltmeter and the ammeter in the circuit are ideal. V A 50.00 (a) The current in the ammeter is 59.0 mA. Calculate the internal resistance of the cell. The circuit is changed by connecting another resistor R in parallel to the 50.0 resistor. V A 50.00 R (b) Explain the effect of this change on R is made of a resistive wire of uniform cross-sectional area 3.1 × 10-8 m², resistivity 4.9 × 10-70m and length L. The resistance of R is given by the equation R = KL where k is a constant. (b.i) the reading of the ammeter. [2] (b.ii) the reading of the voltmeter. [2] (c) Calculate k. State an appropriate unit for your answer. [3] [2]arrow_forwardNo chatgpt pls will upvotearrow_forward
- No chatgpt pls will upvotearrow_forwardA rod 12.0 cm long is uniformly charged and has a total charge of -20.0 μc. Determine the magnitude and direction of the electric field along the axis of the rod at a point 32.0 cm from its center. 361000 ☑ magnitude What is the general expression for the electric field along the axis of a uniform rod? N/C direction toward the rodarrow_forwardA certain brand of freezer is advertised to use 730 kW h of energy per year. Part A Assuming the freezer operates for 5 hours each day, how much power does it require while operating? Express your answer in watts. ΜΕ ΑΣΦ ? P Submit Request Answer Part B W If the freezer keeps its interior at a temperature of -6.0° C in a 20.0° C room, what is its theoretical maximum performance coefficient? Enter your answer numerically. K = ΜΕ ΑΣΦ Submit Request Answer Part C What is the theoretical maximum amount of ice this freezer could make in an hour, starting with water at 20.0°C? Express your answer in kilograms. m = Ο ΑΣΦ kgarrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





