
A skateboarder with his board can be modeled as a particle of mass 76.0 kg, located at his center of mass (which we will study in Chapter 9). As shown in Figure P8.49, the skateboarder starts from rest in a crouch-ing position at one lip of a half-pipe (point Ⓐ). The half-pipe is one half of a cylinder of radius 6.80 m with its axis horizontal. On his descent, the skateboarder moves without friction so that his center of mass moves through one quarter of a circle of radius 630 m. (a) Find his speed at the bottom of the half-pipe (point Ⓑ (b) Immediately after passing point Ⓑhe stands up and raises his arms, lifting his center of mass from 0.500 in to 0.950 m above the concrete (point ©). Next, the skateboarder glides upward with his center of mass moving in a quarter circle of radius 5.85 m. His body is horizontal when he passes point Ⓓ, the far lip of the half-pipe. As he passes through point Ⓓ, the speed of the skateboarder is 5.14 m/s. How much chemical potential energy in the body of the skateboarder was converted to mechanical energy in the skateboarder—Earth system when he stood up at point Ⓑ? (c) How high above point Ⓓ does he rise? Caution: Do not try this stunt yourself without the required skill and protective equipment.
Figure P8.49
(a)

The speed at the bottom of the half pipe.
Answer to Problem 8.49AP
The speed at the bottom of the half pipe is
Explanation of Solution
Given info: The mass of the particle is
The formula to calculate the initial gravitational potential energy of the particle at point
Here,
Thus, the initial gravitational potential energy of the particle at point
The formula to calculate the gravitational potential energy is,
Here,
The height of the particle at point
Substitute 0 for
Thus, the gravitational potential energy at point
The formula to calculate the initial kinetic energy of the particle is,
Here,
The initial velocity of the particle is 0 as the particle is at rest then the kinetic energy at point
Substitute 0 for
Thus, the kinetic energy of the particle at point
The formula to calculate the kinetic energy of the particle at point
Here,
Thus, the kinetic energy at point
The formula to calculate the law of conservation of energy is,
Here,
Substitute
Substitute
Rearrange the above formula for
Substitute
Conclusion:
Therefore, the speed at the bottom of the half pipe is
(b)

The amount of chemical potential energy converted into mechanical energy in the skateboarder- Earth system when he stood up at point
Answer to Problem 8.49AP
The amount of chemical potential energy converted into mechanical energy in the skateboarder- Earth system when he stood up at point
Explanation of Solution
Given info: The mass of the particle is
The formula to calculate the centripetal acceleration of the particle at the point
Here,
Substitute
Thus, the centripetal acceleration of the particle at point
The formula to calculate the normal force acting on the particle at point
Here,
Substitute
Thus, the value of normal force acting on the particle at point
The formula to calculate the chemical energy of the skateboarder converted into mechanical energy at point
Here,
Substitute
Conclusion:
Therefore, the amount of chemical potential energy converted into mechanical energy in the skateboarder- Earth system when he stood up at point
(c)

The height above point
Answer to Problem 8.49AP
The height above point
Explanation of Solution
Given info: The mass of the particle is
The formula to calculate the initial gravitational potential energy of the particle at point
Here,
Thus, the initial gravitational potential energy of the particle at point
The formula to calculate the gravitational potential energy is,
Here,
Thus, the gravitational potential energy at point
The formula to calculate the initial kinetic energy of the particle is,
Here,
Thus, the kinetic energy of the particle at point
The formula to calculate the kinetic energy of the particle at point
Here,
Thus, the kinetic energy at point
The formula to calculate the law of conservation of energy is,
Here,
Substitute
Substitute
Substitute
Conclusion:
Therefore, the height above point
Want to see more full solutions like this?
Chapter 8 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
- Solve and answer the problem correctly and be sure to check your work. Thank you!!arrow_forwardThe spring in the figure has a spring constant of 1300 N/m. It is compressed 17.0 cm, then launches a 200 g block. The horizontal surface is frictionless, but the block’s coefficient of kinetic friction on the incline is 0.200. What distance d does the block sail through the air?arrow_forwardSolve and answer the problem correctly and be sure to check your work. Thank you!!arrow_forward
- Solve and answer the problem correctly and be sure to check your work. Thank you!!arrow_forwardA 10-m-long glider with a mass of 680 kg (including the passengers) is gliding horizontally through the air at 28 m/s when a 60 kg skydiver drops out by releasing his grip on the glider. What is the glider's speed just after the skydiver lets go?arrow_forwardPROBLEM 2 A cube of mass m is placed in a rotating funnel. (The funnel is rotating around the vertical axis shown in the diagram.) There is no friction between the cube and the funnel but the funnel is rotating at just the right speed needed to keep the cube rotating with the funnel. The cube travels in a circular path of radius r, and the angle between the vertical and the wall of the funnel is 0. Express your answers to parts (b) and (c) in terms of m, r, g, and/or 0. (a) Sketch a free-body diagram for the cube. Show all the forces acting on it, and show the appropriate coordinate system to use for this problem. (b) What is the normal force acting on the cube? FN=mg58 (c) What is the speed v of the cube? (d) If the speed of the cube is different from what you determined in part (c), a force of friction is necessary to keep the cube from slipping in the funnel. If the funnel is rotating slower than it was above, draw a new free-body diagram for the cube to show which way friction…arrow_forward
- Circular turns of radius r in a race track are often banked at an angle θ to allow the cars to achieve higher speeds around the turns. Assume friction is not present. Write an expression for the tan(θ) of a car going around the banked turn in terms of the car's speed v, the radius of the turn r, and g so that the car will not move up or down the incline of the turn. tan(θ) =arrow_forwardThe character Min Min from Arms was a DLC character added to Super Smash Bros. Min Min’s arms are large springs, with a spring constant of 8.53 ⋅ 10^3 N/m, which she uses to punch and fling away her opponents. Min Min pushes her spring arm against Steve, who is not moving, compressing it 1.20 m as shown in figure A. Steve has a mass of 81.6 kg. Assuming she uses only the spring to launch Steve, how fast is Steve moving when the spring is no longer compressed? As Steve goes flying away he goes over the edge of the level, as shown in figure C. What is the magnitude of Steve’s velocity when he is 2.00 m below where he started?arrow_forwardSlinky dog whose middle section is a giant spring with a spring constant of 10.9 N/m. Woody, who has a mass of 0.412 kg, grabs onto the tail end of Slink and steps off the bed with no initial velocity and reaches the floor right as his velocity hits zero again. How high is the bed? What is Woody’s velocity halfway down? Enter just the magnitude of velocity.arrow_forward
- No chatgpt pls will upvotearrow_forwardA positive charge of 91 is located 5.11 m to the left of a negative charge 92. The charges have different magnitudes. On the line through the charges, the net electric field is zero at a spot 2.90 m to the right of the negative charge. On this line there are also two spots where the potential is zero. (a) How far to the left of the negative charge is one spot? (b) How far to the right of the negative charge is the other?arrow_forwardA charge of -3.99 μC is fixed in place. From a horizontal distance of 0.0423 m, a particle of mass 7.31 x 103 kg and charge -9.76 µC is fired with an initial speed of 84.1 m/s directly toward the fixed charge. How far does the particle travel before its speed is zero?arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





