A small pharmaceutical firm plans to manufacture a new drug and has hired you as a consultant to design a condenser to remove the drug from a gas-vapor mixture. The mixture, which contains 20 mole% of the drug and the balance nitrogen, will be fed to the condenser at 510 K and 1 atm at a rate of 3.5 L/s. Of the drug fed to the unit, 90% must be condensed. No physical property data are available for the drug, and part of your job is to acquire the data needed to design the condenser. The company has sent you a large sample of the liquid drug for this purpose.
You acquire an insulated 2.000-liter container with a known heat capacity and a built-in electrical heating coil that can deliver a known heat input to the contents of the container. A calibrated thermocouple is used to measure the temperature in the vessel, and the pressure is measured with a mercury manometer.
You carry out a series of experiments on a day when atmospheric pressure is 763 mm Hg. Experiment 1. Fill the container with the liquid, then seal and weigh.
mass of container + liquid = 4.4553 kg mass of evacuated container = 3.2551 kg
Next, starting at each of two temperatures (
To= 283.0 K,
Assume that the liquid heat capacity may be expressed as a linear function of temperature (Cv= aT + b) when analyzing these results.
Experiment 2. Pour a small quantity of the drug into the container, place the container in a liquid nitrogen bath to freeze the drug, evacuate all of the air. and seal the container. Weigh the container after it comes back to room temperature.
mass of container + drug = 3.2571 kg
Next heat the scaled container until all of the liquid evaporates, and repeat Experiment 1.
Assume that the vapor heat capacity may be expressed as a linear function of temperature when analyzing these results.
Experiment 3. Fill approximately half the container with the drug, freeze, evacuate the air. and seal. Measure the pressure at several temperatures, verifying that liquid is present in the container at each temperature.
Using the given data, determine the following physical properties of the drug: (i) liquid specific gravity, (ii) molecular weight, (iii) linear expressions for the heat capacities at constant volume [in J/(mol·K)] for both the liquid and vapor
- , (iv) linear expressions for Cpfor both liquid and vapor, (v) a Clausius-Clapeyron expression for p*(T), (vi) the normal boiling point, and (vii) the heat of vaporization (in J/mol) at the normal boiling point.
Want to see the full answer?
Check out a sample textbook solutionChapter 8 Solutions
ELEM.PRINCIPLES OF CHEMICAL PROCESSES
Additional Engineering Textbook Solutions
Starting Out With Visual Basic (8th Edition)
Database Concepts (8th Edition)
Starting Out with Java: From Control Structures through Data Structures (4th Edition) (What's New in Computer Science)
Java How to Program, Early Objects (11th Edition) (Deitel: How to Program)
Java: An Introduction to Problem Solving and Programming (8th Edition)
Starting Out with C++ from Control Structures to Objects (9th Edition)
- and the viscosity of the water is 1.24 × 104 Nsm 2. Answer: Slug flow 1. Determine the range of mean density of a mixture of air in a 50:50 oil-water liquid phase across a range of gas void fractions. The den- sity of oil is 900 kgm³, water is 1000 kgm³, and gas is 10 kgm³.arrow_forwardA chemical reaction takes place in a container of cross-sectional area 50.0 cm2. As a result of the reaction, a piston is pushed out through 15 cm against an external pressure of 121 kPa. Calculate the work done (in J) by the system.arrow_forwardExample 7.2 Steam is generated in a high pressure boiler containing tubes 2.5 m long and 12.5 mm internal diameter. The wall roughness is 0.005 mm. Water enters the tubes at a pressure of 55.05 bar and a temperature of 270°C, and the water flow rate through each tube is 500 kg/h. Each tube is heated uniformly at a rate of 50 kW. Calle (a) Estimate the pressure drop across each tube (neglecting end effects) using (i) the homogeneous flow model and (ii) the Martinelli-Nelson correlation. (b) How should the calculation be modified if the inlet temperature were 230°C at the same pressure?arrow_forward
- Please solve this question by simulation in aspen hysysarrow_forward(11.35. For a binary gas mixture described by Eqs. (3.37) and (11.58), prove that: 4812 Pу132 ✓ GE = 812 Py1 y2. ✓ SE dT HE-12 T L = = (812 - 7 1/8/123) d² 812 Pylyz C=-T Pylyz dT dT² See also Eq. (11.84), and note that 812 = 2B12 B11 - B22. perimental values of HE for binary liquid mixtures ofarrow_forwardplease provide me the solution with more details. because the previous solution is not cleararrow_forward
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The