
(a)
The available shear strength of the connection based on Allowed Stress Design.

Answer to Problem 8.6.3P
The available shear strength of the connection based on Allowed Stress Design.
is
Explanation of Solution
Given:
A
The
Calculation:
The available shear strength of the connections is least of the following,
- Strength of the bolt.
- Plates shear yielding strength.
- Plate shear rupture strength.
- Plates block shear strength.
- Strength of the weld.
Write the expression to obtain the bolt shear strength.
Here, the cross section area of the unthreaded part of the bolt is
Substitute
The shear strength of the
Write the expression to obtain the bearing strength of the bolts on the plate.
Here, the safety factor is
Substitute
Thus,
The bearing strength for the two bolts adjacent to the plate.
Write the expression to obtain the bearing strength of the bolts other than on the plate.
Here, the safety factor is
Substitute
Thus,
The bearing strength for the two such bolts is,
Thus, the total bearing strength of the bolts is:
Thus, the bolt strength is least of the shear strength and bearing strength of the bolts.
From Equations (II) and (V),
Write the expression to obtain the plate shear yielding strength.
Here, the gross cross section area of the plate perpendicular to the applied load is
Substitute
Write the expression to obtain the shear rupture strength of the plate.
Here, the net area along the shear surface is
Substitute,
Write the expression to obtain the block shear strength of the plate.
Here, the net area along the shear surface is
Substitute
Thus,
Write the expression to obtain the design shear strength of weld.
Here, the size of the fillet weld is
Substitute
Further solve the above equation.
For
Write the expression to obtain the shear yielding strength for the base metal for
Here, the thickness of the base metal is
Substitute
Write the expression to obtain the shear rupture strength of the base metal.
Here, the thickness of the base metal is
Substitute
Write the expression to obtain the yielding strength for the base metal.
Here, the thickness of the base metal is
Substitute
From Equation (VI), (VIII), (X) and (XXI), the least value will be the available shear strength of the connections.
Thus,
Conclusion:
Thus, the available shear strength of the connection is
(b)
The flexural strength of the member based on Allowed Stress Design.

Answer to Problem 8.6.3P
The available flexural strength of the member based on Allowed Stress Design.
is
Explanation of Solution
Calculation:
The available flexural strength of the connections is least of the following,
- Strength of the bolt.
- Tension on gross section of the plate.
- Tension on net section of the plate.
- The block shear of the flange plate.
- The block shear of the beam flange.
- The compression of the bottom flange plate.
Write the expression to obtain the tension force due to yielding of the gross section area of the plate.
Here, the gross sectional area of the plate is
Substitute,
Write the expression to obtain the tension rupture strength of the plate.
Here, the net area of the plate is
Substitute,
Write the expression to obtain the bolt shear strength.
Here, the cross section area of the unthreaded part of the bolt is
Substitute
The shear strength of the
Write the expression to obtain the bearing strength of the bolts on the plate.
Here, the safety factor is
Substitute
Thus,
The bearing strength for the
Write the expression to obtain the bearing strength of the bolts other than on the plate.
Here, the safety factor is
Substitute
Thus,
The bearing strength for
Thus, the total bearing strength of the bolts is:
Thus, the bolt strength is least of the shear strength and bearing strength of the bolts.
From Equation (XXVII) and (XXX),
Write the expression to obtain the block shear strength of the plate.
Here, the net area along the shear surface is
Substitute
Thus,
Write the expression to obtain the block shear strength of the beam flange.
Here, the net area along the shear surface is
Substitute
Thus,
Write the expression to obtain the compressive strength of the member.
Here, the safety factor for compression is
Substitute,
From Equations (XXIII), (XXV), (XXXI), (XXXV) and (XXXVII), the least value will be the tension at the net section as
Thus,
Write the expression to obtain the moment transferred by flange plate.
Here, lever arm distance is
Substitute
Conclusion:
Thus, the available flexural strength of the member is
Want to see more full solutions like this?
Chapter 8 Solutions
Bundle: Steel Design, Loose-leaf Version, 6th + Mindtap Engineering, 1 Term (6 Months) Printed Access Card
- 7.69 Assume that the head loss in the pipe is given by h₁ = 0.014(L/D) (V²/2g), where L is the length of pipe and D is the pipe diameter. Assume α = 1.0 at all locations. a. Determine the discharge of water through this system. b. Draw the HGL and the EGL for the system. c. Locate the point of maximum pressure. d. Locate the point of minimum pressure. e. Calculate the maximum and minimum pressures in the system. Elevation 100 m Water T = 10°C L = 100 m D = 60 cm Elevation 95 m Elevation 100 m L = 400 m D = 60 cm Elevation = 30 m Nozzle 30 cm diameter jet Problem 7.69arrow_forwardA rectangular flume of planed timber (n=0.012) slopes 0.5 ft per 1000 ft. (i)Compute the discharge if the width is 7 ft and the depth of water is 3.5 ft. (ii) What would be thedischarge if the width were 3.5 ft and depth of water is 7 ft? (iii) Which of the two forms wouldhave greater capacity and which would require less lumber?arrow_forwardFigure shows a tunnel section on the Colorado River Aqueduct. The area of the water cross section is 191 ft 2 , and the wetted perimeter is 39.1 ft. The flow is 1600 cfs. If n=0.013 for the concrete lining, find the slope.arrow_forward
- 7.48 An engineer is making an estimate for a home owner. This owner has a small stream (Q= 1.4 cfs, T = 40°F) that is located at an elevation H = 34 ft above the owner's residence. The owner is proposing to dam the stream, diverting the flow through a pipe (penstock). This flow will spin a hydraulic turbine, which in turn will drive a generator to produce electrical power. Estimate the maximum power in kilowatts that can be generated if there is no head loss and both the turbine and generator are 100% efficient. Also, estimate the power if the head loss is 5.5 ft, the turbine is 70% efficient, and the generator is 90% efficient. Penstock Turbine and generator Problem 7.48arrow_forwarddesign rectangular sections for the beam and loads, and p values shown. Beam weights are not included in the loads given. Show sketches of cross sections including bar sizes, arrangements, and spacing. Assume concrete weighs 23.5 kN/m'. fy= 420 MPa, and f’c= 21 MPa.Show the shear and moment diagrams as wellarrow_forwardDraw as a 3D object/Isometricarrow_forward
- Post-tensioned AASHTO Type II girders are to be used to support a deck with unsupported span equal to 10 meters. Two levels of Grade 250, 10 x 15.2 mm Ø 7-wire strand are used to tension the girders with 5 tendons per level, where the tendons on top stressed before the ones on the bottom. The girder is simply supported at both ends. The anchors are located 100 mm above the neutral axis at the supports while the eccentricity is measured at 400 mm at the midspan. The tendon profile follows a parabolic shape using a rigid metal sheathing. A concrete topping (slab) 130 mm thick is placed above the beam with a total tributary width of 4 meters. Use maximum values for ranges (table values). Assume that the critical section of the beam is at 0.45LDetermine the losses (friction loss, anchorage, elastic shortening, creep, shrinkage, relaxation). Determine the stresses at the top fibers @ critical section before placing a concrete topping, right after stress transfer. Determine the stress at the…arrow_forwardPlease solve this question in hand writting step by step with diagram drawingarrow_forwardSolve this question pleasearrow_forward
- Please draw shear and moment diagrams with provided information.arrow_forwardShow step by step solutionarrow_forwardDraw the shear and the moment diagrams for each of the frames below. If the frame is statically indeterminate the reactions have been provided. Problem 1 (Assume pin connections at A, B and C). 30 kN 2 m 5 m 30 kN/m B 60 kN 2 m 2 m A 22 CO Carrow_forward
- Steel Design (Activate Learning with these NEW ti...Civil EngineeringISBN:9781337094740Author:Segui, William T.Publisher:Cengage Learning
