Use Le Chȃtelier’s principle to predict the direction of equilibrium shift and the changes that will be observed (color, amount of precipitate, etc.) in the following equilibria when the indicated stress is applied:
a.
The equilibrium mixture is heated.
b.
c.
d.
e.
A catalyst is added to the equilibrium mixture.
(a)
Interpretation:
The direction of the equilibrium shift and the change that will be observed (color, amount of precipitate, etc.) in the given equilibria when the indicated stress is applied is to be predicted using the Le Chȃtelier’s principle.
Concept introduction:
The equilibrium constant is a parameter which describes the relationship between concentration of the reactants and the products at equilibrium stage. Equilibrium constant of a reaction is expressed by the ratio of concentration of product species raised to the power of their stoichiometric coefficients to the concentration of reactant species raised to the power of their stoichiometric coefficients.
Answer to Problem 8.53E
The shift in the equilibrium will be towards the right direction and blue color will be observed due to the formation of cobalt complex.
Explanation of Solution
According to the Le Chȃtelier’s principle the change in concentration, volume, pressure and temperature affects the equilibrium of the reaction.
The given equilibrium reaction is shown below.
It is considered that when reaction mixture is heated, the temperature on the left hand side increases. Hence, according to the Le Chȃtelier’s principle, the equilibrium will shift towards right direction to compensate the increase in temperature. Thus, blue color will be observed due to the formation of cobalt complex.
The shift in the equilibrium will be towards the right direction and blue color will be observed due to the formation of cobalt complex.
(b)
Interpretation:
The direction of the equilibrium shift and the change that will be observed (color, amount of precipitate, etc.) in the given equilibria when the indicated stress is applied is to be predicted using the Le Chȃtelier’s principle.
Concept introduction:
The equilibrium constant is a parameter which describes the relationship between concentration of the reactants and the products at equilibrium stage. Equilibrium constant of a reaction is expressed by the ratio of concentration of product species raised to the power of their stoichiometric coefficients to the concentration of reactant species raised to the power of their stoichiometric coefficients.
Answer to Problem 8.53E
The shift in the equilibrium will be towards the right direction and blue color will be observed due to the formation of cobalt complex.
Explanation of Solution
According to the Le Chȃtelier’s principle the change in concentration, volume, pressure and temperature affects the equilibrium of the reaction.
The given equilibrium reaction is shown below.
It is considered that when
The shift in the equilibrium will be towards the right direction and blue color will be observed due to the formation of cobalt complex.
(c)
Interpretation:
The direction of the equilibrium shift and the change that will be observed (color, amount of precipitate, etc.) in the given equilibria when the indicated stress is applied is to be predicted using the Le Chȃtelier’s principle.
Concept introduction:
The equilibrium constant is a parameter which describes the relationship between concentration of the reactants and the products at equilibrium stage. Equilibrium constant of a reaction is expressed by the ratio of concentration of product species raised to the power of their stoichiometric coefficients to the concentration of reactant species raised to the power of their stoichiometric coefficients.
Answer to Problem 8.53E
The shift in the equilibrium will be towards the right direction and red color will be observed due to the formation of iron complex.
Explanation of Solution
According to the Le Chȃtelier’s principle the change in concentration, volume, pressure and temperature affects the equilibrium of the reaction.
The given equilibrium reaction is shown below.
It is considered that when
The shift in the equilibrium will be towards the right direction and red color will be observed due to the formation of iron complex.
(d)
Interpretation:
The direction of the equilibrium shift and the change that will be observed (color, amount of precipitate, etc.) in the given equilibria when the indicated stress is applied is to be predicted using the Le Chȃtelier’s principle.
Concept introduction:
The equilibrium constant is a parameter which describes the relationship between concentration of the reactants and the products at equilibrium stage. Equilibrium constant of a reaction is expressed by the ratio of concentration of product species raised to the power of their stoichiometric coefficients to the concentration of reactant species raised to the power of their stoichiometric coefficients.
Answer to Problem 8.53E
The shift in the equilibrium will be towards the right direction and white solid will be formed due to the formation of lead chloride.
Explanation of Solution
According to the Le Chȃtelier’s principle the change in concentration, volume, pressure and temperature affects the equilibrium of the reaction.
The given equilibrium reaction is shown below.
It is considered that when
The shift in the equilibrium will be towards the right direction and white solid will be formed due to the formation of lead chloride.
(e)
Interpretation:
The direction of the equilibrium shift and the change that will be observed (color, amount of precipitate, etc.) in the given equilibria when the indicated stress is applied is to be predicted using the Le Chȃtelier’s principle.
Concept introduction:
The equilibrium constant is a parameter which describes the relationship between concentration of the reactants and the products at equilibrium stage. Equilibrium constant of a reaction is expressed by the ratio of concentration of product species raised to the power of their stoichiometric coefficients to the concentration of reactant species raised to the power of their stoichiometric coefficients.
Answer to Problem 8.53E
There will be no effect of catalyst on the equilibrium of the reaction.
Explanation of Solution
According to the Le Chȃtelier’s principle the change in concentration, volume, pressure and temperature affects the equilibrium of the reaction.
The given equilibrium reaction is shown below.
It is considered that when catalyst is added to the equilibrium mixture, there will be no effect of catalyst on the equilibrium. It will only increase the rate of reaction.
There will be no effect of catalyst on the equilibrium of the reaction.
Want to see more full solutions like this?
Chapter 8 Solutions
Study Guide with Student Solutions Manual for Seager/Slabaugh/Hansen's Chemistry for Today: General, Organic, and Biochemistry, 9th Edition
Additional Science Textbook Solutions
Campbell Essential Biology with Physiology (5th Edition)
Chemistry: Structure and Properties (2nd Edition)
Organic Chemistry (8th Edition)
- Show work. Don't give Ai generated solutionarrow_forwardExplain how the equation 4Fe(OH)2(s)+O2(g)→2Fe2O3(s)+4H2O(l) in the article illustrates the oxidation of the iron in the rectants.arrow_forwardIf you wanted to make something out of metal but didn't want it to rust, what are your options?arrow_forward
- Explain how the equation 4Fe(OH)2(s) + O2(g)→2Fe2O3(s) + 4H2O(l) in the article illustrates the oxidation of the iron ions in the reactantsarrow_forwardA Predict the major products of the following reaction. Be sure to use wedge and dash bonds to show the stereochemistry of the products when it's important, for example to distinguish between two different major products. + Cl₂ 2 X Click and drag to start drawing a structure.arrow_forwardC app.aktiv.com Predict reagents needed to complete this E2 elimination reaction. Br Problem 17 of 40 H3O+ A heat NaH B heat 0 D E (CH)COK heat CH₂ONa (CH)COH heat Donearrow_forward
- Please correct answer and don't use hand ratingarrow_forwardDraw the structure of the product of this reaction. H CH2CH3 Br H-... H H3C KOH E2 elimination product • Use the wedge/hash bond tools to indicate stereochemistry where it exists. • If there are alternative structures, draw the most stable one. • If no reaction occurs, draw the organic starting material. O + 98 // n ?arrow_forward4. a) Give a suitable rationale for the following cyclization, stating the type of process involved (e.g. 9-endo-dig), clearly showing the mechanistic details at each step. H CO₂Me 1) NaOMe 2) H3O® CO₂Mearrow_forward
- 2. Platinum and other group 10 metals often act as solid phase hydrogenation catalysts for unsaturated hydrocarbons such as propylene, CH3CHCH2. In order for the reaction to be catalyzed the propylene molecules must first adsorb onto the surface. In order to completely cover the surface of a piece of platinum that has an area of 1.50 cm² with propylene, a total of 3.45 x 10¹7 molecules are needed. Determine the mass of the propylene molecules that have been absorbed onto the platinum surface.arrow_forwardChem 141, Dr. Haefner 2. (a) Many main group oxides form acidic solutions when added to water. For example solid tetraphosphorous decaoxide reacts with water to produce phosphoric acid. Write a balanced chemical equation for this reaction. (b) Calcium phosphate reacts with silicon dioxide and carbon graphite at elevated temperatures to produce white phosphorous (P4) as a gas along with calcium silicate (Silcate ion is SiO3²-) and carbon monoxide. Write a balanced chemical equation for this reaction.arrow_forwardProblem Set 4a Chem 1411. A latex balloon is filled with a total of carbon dioxide gas so that its volume reaches 1.352 L. The balloon whose weight was originally 0.753 g, now weighs 2.538 g. How many molecules of carbon dioxide have been added to the balloon?arrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning