Concept explainers
(a)
Interpretation:
The acid and conjugate acid in the reaction has to be labeled.
The given equation is,
Concept Introduction:
Bronsted-Lowry Acids: A Bronsted-Lowry acid is proton donor and contains a hydrogen atom. It may be a neutral molecule or may contain a net positive or negative charge.
Bronsted-Lowry Bases: A Bronsted-Lowry base is a proton acceptor. A base should contain a lone pair of electrons, which donates to form a new bond. It can be neutral or can contain a negative charge.
Conjugate acid: A conjugate acid is the product formed by a gain of a proton by a base. The conjugate acid of the base B will be
Conjugate base: A conjugate base is the product formed by a loss of proton from an acid. The conjugate base of the acid A will be
(b)
Interpretation:
The acid and conjugate acid of the reaction has to be labeled.
The given equation is,
Concept Introduction:
Refer to part (a).
Want to see the full answer?
Check out a sample textbook solutionChapter 8 Solutions
Connect 1-Semester Online Access for Principles of General, Organic & Biochemistry
- What is the net ionic equation for the reaction of acetic acid and sodium hydroxide? (a) H3O+(aq) + OH(aq) 2 H2O(l) (b) Na+(aq) + CH3CO2(aq) NaCH3CO2(aq) (c) CH3CO2H(aq) + OH(aq) H2O(l) + CH3CO2(aq) (d) CH3CO2H(aq) + NaOH(aq) H2O(l) NaCH3CO2(aq)arrow_forwardVitamin C has the formula C6H8O6. Besides being an acid, it is a reducing agent. One method for determining the amount of vitamin C in a sample is to titrate it with a solution of bromine, Br2, an oxidizing agent. C6H8O6(aq) + Br2(aq) 2 HBr(aq) + C6H6O6(aq) A 1.00-g "chewable" vitamin C tablet requires 27.85 ml of 0.102 M Br2 for titration to the equivalence point. What is the mass of vitamin C in the tablet?arrow_forwardComplete and balance each acid-base reaction. a. H3PO4(aq) + NaOH(aq) Contains three acidic hydrogens b. H2SO4(aq) + Al(OH)3(s) Contains two acidic hydrogens c. H2Se(aq) + Ba(OH)2(aq) Contains two acidic hydrogens d. H2C2O4 (aq) + NaOH(aq) Contains two acidic hydrogensarrow_forward
- A mountain lake that is 4.0 km × 6.0 km with an average depth of 75 m has an H+(aq) concentration of 1.3 × 10−6 M. Calculate the mass of calcium carbonate that would have to be added to the lake to change the H+(aq) concentration to 6.3 × 10−8 M. Assume that all the carbonate is converted to carbon dioxide, which bubbles out of the solution.arrow_forwardWrite the balanced formula, complete ionic, and net ionic equations for each of the following acid-base reactions. a. HClO4(aq) + Mg(OH)2(s) b. HCN(aq) + NaOH(aq) c. HCl(aq) + NaOH(aq)arrow_forward3.85 The particulate drawing shown represents an aqueous so- lution of an acid HA, where A might represent an atom or group of atoms. Is HA a strong acid or a weak acid? Explain how you can tell from the picture.arrow_forward
- A solution of sodium cyanide, NaCN, has a pH of 12.10. How many grams of NaCN are in 425 mL of a solution with the same pH?arrow_forwardComplete the right side of each of the following molecular equations. Then write the net ionic equations. Assume all salts formed are soluble. Acid salts are possible. a Ca(OH)2(aq) + 2H2SO4(aq) b 2H3PO4(aq) + Ca(OH)2(aq) c NaOH(aq) + H2SO4(aq) d Sr(OH)2(aq) + 2H2CO3(aq)arrow_forwardFor an acid-base reaction, what is the reacting species (the ion or molecule that appears in the chemical equation) in the following bases? (a) barium hydroxide (b) trimethylamine (CH3)3N (c) aniline, C6H5NH2 (d) sodium hydroxidearrow_forward
- Identify the ions that exist in each aqueous solution, and specify the concentration of each ion. (a) 0.25 M(NH4)2SO4 (b) 0.123 M Na2CO3 (c) 0.056 M HNO3arrow_forwardExperiments show that propionic acid (CH3CH2COOH) is a weak acid. Write the chemical equation.arrow_forwardA scientist has synthesized a diprotic organic acid, H2A, with a molar mass of 124.0 g/mol. The acid must be neutralized (forming the potassium salt) for an important experiment. Calculate the volume of 0.221 M KOH that is needed to neutralize 24.93 g of the acid, forming K2A.arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning