Energy is conventionally measured in Calories as well as in joules. One Calorie in nutrition is one kilocalorie, defined as 1 kcal = 4 186 J. Metabolizing 1 g of fat can release 9.00 kcal. A student decides to try to lose weight by exercising. He plans to run up and down the stairs in a football stadium as fast as he can and as many times as necessary. To evaluate the program, suppose he runs up a flight of 80 steps, each 0.150 m high, in 65.0 s. For simplicity, ignore the energy he uses in coming down (which is small). Assume a typical efficiency for human muscles is 20.0%. This statement means that when your body converts 100J from metabolizing fat, 20 J goes into doing mechanical work (here, climbing stairs). The remainder goes into extra internal energy. Assume the student’s mass is 75.0 kg. (a) How many times must the student run the flight of stairs to lose 1.00 kg of fat? (b) What is his average power output, in watts and in horsepower, as he runs up the stairs? (c) Is this activity in itself a practical way to lose weight?
Energy is conventionally measured in Calories as well as in joules. One Calorie in nutrition is one kilocalorie, defined as 1 kcal = 4 186 J. Metabolizing 1 g of fat can release 9.00 kcal. A student decides to try to lose weight by exercising. He plans to run up and down the stairs in a football stadium as fast as he can and as many times as necessary. To evaluate the program, suppose he runs up a flight of 80 steps, each 0.150 m high, in 65.0 s. For simplicity, ignore the energy he uses in coming down (which is small). Assume a typical efficiency for human muscles is 20.0%. This statement means that when your body converts 100J from metabolizing fat, 20 J goes into doing mechanical work (here, climbing stairs). The remainder goes into extra internal energy. Assume the student’s mass is 75.0 kg. (a) How many times must the student run the flight of stairs to lose 1.00 kg of fat? (b) What is his average power output, in watts and in horsepower, as he runs up the stairs? (c) Is this activity in itself a practical way to lose weight?
Solution Summary: The author calculates the total energy released in burning 1kg of fat by calculating the distance travelled in n flights.
Energy is conventionally measured in Calories as well as in joules. One Calorie in nutrition is one kilocalorie, defined as 1 kcal = 4 186 J. Metabolizing 1 g of fat can release 9.00 kcal. A student decides to try to lose weight by exercising. He plans to run up and down the stairs in a football stadium as fast as he can and as many times as necessary. To evaluate the program, suppose he runs up a flight of 80 steps, each 0.150 m high, in 65.0 s. For simplicity, ignore the energy he uses in coming down (which is small). Assume a typical efficiency for human muscles is 20.0%. This statement means that when your body converts 100J from metabolizing fat, 20 J goes into doing mechanical work (here, climbing stairs). The remainder goes into extra internal energy. Assume the student’s mass is 75.0 kg. (a) How many times must the student run the flight of stairs to lose 1.00 kg of fat? (b) What is his average power output, in watts and in horsepower, as he runs up the stairs? (c) Is this activity in itself a practical way to lose weight?
Study of body parts and their functions. In this combined field of study, anatomy refers to studying the body structure of organisms, whereas physiology refers to their function.
ROTATIONAL DYNAMICS
Question 01
A solid circular cylinder and a solid spherical ball of the same mass and radius are rolling
together down the same inclined. Calculate the ratio of their kinetic energy. Assume pure
rolling motion Question 02
A sphere and cylinder of the same mass and radius start from ret at the same point and more
down the same plane inclined at 30° to the horizontal
Which body gets the bottom first and what is its acceleration
b) What angle of inclination of the plane is needed to give the slower body the same
acceleration
Question 03
i)
Define the angular velocity of a rotating body and give its SI unit
A car wheel has its angular velocity changing from 2rads to 30 rads
seconds. If the radius of the wheel is 400mm. calculate
ii)
The angular acceleration
iii)
The tangential linear acceleration of a point on the rim of the wheel
Question 04
in 20
Question B3
Consider the following FLRW spacetime:
t2
ds² = -dt² +
(dx²
+ dy²+ dz²),
t2
where t is a constant.
a)
State whether this universe is spatially open, closed or flat.
[2 marks]
b) Determine the Hubble factor H(t), and represent it in a (roughly drawn) plot as a function
of time t, starting at t = 0.
[3 marks]
c) Taking galaxy A to be located at (x, y, z) = (0,0,0), determine the proper distance to galaxy
B located at (x, y, z) = (L, 0, 0). Determine the recessional velocity of galaxy B with respect
to galaxy A.
d) The Friedmann equations are
2
k
8πG
а
4πG
+
a²
(p+3p).
3
a
3
[5 marks]
Use these equations to determine the energy density p(t) and the pressure p(t) for the
FLRW spacetime specified at the top of the page.
[5 marks]
e) Given the result of question B3.d, state whether the FLRW universe in question is (i)
radiation-dominated, (ii) matter-dominated, (iii) cosmological-constant-dominated, or (iv)
none of the previous. Justify your answer.
f)
[5 marks]
A conformally…
SECTION B
Answer ONLY TWO questions in Section B
[Expect to use one single-sided A4 page for each Section-B sub question.]
Question B1
Consider the line element
where w is a constant.
ds²=-dt²+e2wt dx²,
a) Determine the components of the metric and of the inverse metric.
[2 marks]
b) Determine the Christoffel symbols. [See the Appendix of this document.]
[10 marks]
c)
Write down the geodesic equations.
[5 marks]
d) Show that e2wt it is a constant of geodesic motion.
[4 marks]
e)
Solve the geodesic equations for null geodesics.
[4 marks]
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
8.01x - Lect 11 - Work, Kinetic & Potential Energy, Gravitation, Conservative Forces; Author: Lectures by Walter Lewin. They will make you ♥ Physics.;https://www.youtube.com/watch?v=9gUdDM6LZGo;License: Standard YouTube License, CC-BY