Two fun-loving otters are sliding toward each other on a muddy (and hence friction less) horizontal surface. One of them, of mass 7.50 kg, is sliding to the left at 5.00 m/s. while the other, of mass 5.75 kg, is slipping to the right at 6.00 m/s. They hold fast to each other after they collide. (a) Find the magnitude and direction of the velocity of these free-spirited otters right after they collide. (b) How much mechanical energy dissipates during this play?
Want to see the full answer?
Check out a sample textbook solutionChapter 8 Solutions
University Physics with Modern Physics (14th Edition)
Additional Science Textbook Solutions
An Introduction to Thermal Physics
Applied Physics (11th Edition)
Physics: Principles with Applications
Sears And Zemansky's University Physics With Modern Physics
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
Cosmic Perspective Fundamentals
- From what might be a possible scene in the comic book The X-Men, the Juggernaut (mJ) is charging into Colossus (mC) and the two collide. The initial speed of the Juggernaut is vJi and the initial speed of Colossus is vCi. After the collision, the final speed of the Juggernaut is vJf and the final speed of Colossus is vCf as they each bounce off of the other, heading in opposite directions. a. What is the impulse experienced by the Juggernaut? b. What is the impulse experienced by Colossus? c. In your own words, explain how these impulses must compare with each other and how they are related to the average force each superhero experiences during the collision.arrow_forwardA rocket has total mass Mi = 360 kg, including Mfuel = 330 kg of fuel and oxidizer. In interstellar space, it starts from rest at the position x = 0, turns on its engine at time t = 0, and puts out exhaust with relative speed ve = 1 500 m/s at the constant rate k = 2.50 kg/s. The fuel will last for a burn time of Tb = Mfuel/k = 330 kg/(2.5 kg/s) = 132 s. (a) Show that during the burn the velocity of the rocket as a function of time is given by v(t)=veln(1ktMi) (b) Make a graph of the velocity of the rocket as a function of time for times running from 0 to 132 s. (c) Show that the acceleration of the rocket is a(t)=kveMikt (d) Graph the acceleration as a function of time. (c) Show that the position of the rocket is x(t)=ve(Mikt)ln(1ktMi)+vet (f) Graph the position during the burn as a function of time.arrow_forwardA girl of mass mg is standing on a plank of mass mp. Both are originally at rest on a frozen lake that constitutes a frictionless, flat surface. The girl begins to walk along the plank at a constant velocity vgp to the right relative to the plank. (The subscript gp denotes the girl relative to plank.) (a) What is the velocity vpi of the plank relative to the surface of the ice? (b) What is the girls velocity vgi relative to the ice surface?arrow_forward
- There is a compressed spring between two laboratory carts of masses m1 = 105 g and m2 = 212 g. Initially, the carts are held at rest on a horizontal track (Fig. P10.40A). The carts are released, and the cart of mass m1 has velocity vi=2.035i m/s in the positive x direction (Fig. 10.40B). Assume rolling friction is negligible. a. What is the net external force on the two-cart system? b. Find the velocity of cart 2. FIGURE P10.40 Problems 40 and 41.arrow_forwardA space probe, initially at rest, undergoes an internal mechanical malfunction and breaks into three pieces. One piece of mass ml = 48.0 kg travels in the positive x-direction at 12.0 m/s, and a second piece of mass m2 = 62.0 kg travels in the xy-plane at an angle of 105 at 15.0 m/s. The third piece has mass m3 = 112 kg. (a) Sketch a diagram of the situation, labeling the different masses and their velocities, (b) Write the general expression for conservation of momentum in the x- and y-directions in terms of m1, m2, m3, v1, v2 and v3 and the sines and cosines of the angles, taking to be the unknown angle, (c) Calculate the final x-components of the momenta of m1 and m2. (d) Calculate the final y-components of the momenta of m1 and m2. (e) Substitute the known momentum components into the general equations of momentum for the x- and y-directions, along with the known mass m3. (f) Solve the two momentum equations for v3 cos and v3 sin , respectively, and use the identity cos2 + sin2 = 1 to obtain v3. (g) Divide the equation for v3 sin by that for v3 cos to obtain tan , then obtain the angle by taking the inverse tangent of both sides, (h) In general, would three such pieces necessarily have to move in the same plane? Why?arrow_forwardWhat exhaust speed is required to accelerate a rocket in deep space from 800 m/s to 1000 m/s in 5.0 s if the total rocket mass is 1200 kg and the rocket only has 50 kg of fuel left?arrow_forward
- A 5-kg cart moving to the right with a speed of 6 m/s collides with a concrete wall and rebounds with a speed of 2 m/s. What is the change in momentum of the cart? (a) 0 (b) 40 kg m/s (c) 40 kg m/s (d) 30 kg m/s (e) 10 kg m/sarrow_forwardA cannon is rigidly attached to a carriage, which can move along horizontal rails but is connected to a post by a large spring, initially unstretchcd and with force constant k = 2.00 104 N/m, as shown in Figure P8.60. The cannon fires a 200-kg projectile at a velocity of 125 m/s directed 45.0 above the horizontal. (a) Assuming that the mass of the cannon and its carriage is 5 000 kg, find the recoil speed of the cannon. (b) Determine the maximum extension of the spring. (c) Find the maximum force the spring exerts on the carriage. (d) Consider the system consisting of the cannon, carriage, and projectile. Is the momentum of this system conserved during the firing? Why or why not?arrow_forwardFind the center of mass of a rectangular material of length a and width b made up of a material of nonuniform density. The density is such that when the rectangle is placed in the xy-plane, the density is given by (x,y)=0xy .arrow_forward
- A 45.0-kg girl is standing on a 167-kg plank. The plank, originally at rest, is free to slide on a frozen lake, which is a flat, frictionless surface. The girl begins to walk along the plank at a constant velocity of 1.30 m/s to the right relative to the plank. (Let the direction the girl is moving in be positive. Indicate the direction with the sign of your answer.) (a) What is her velocity relative to the surface of ice? 0.782 Your response differs from the correct answer by more than 10%. Double check your calculations. m/s (b) What is the velocity of the plank relative to the surface of ice? -0.518 Your response differs from the correct answer by more than 10%. Double check your calculations. m/sarrow_forwardBlocks A (mass 5.00 kg) and B (mass 11.00 kg, to the right of A) move on a frictionless, horizontal surface. Initially, block B is moving to the left at 0.500 m/s and block A is moving to the right at 2.00 m/s. The blocks are equipped with ideal spring bumpers. The collision is headon, so all motion before and after it is along a straight line. Let + be the direction of the initial motion of A. Part A Find the maximum energy stored in the spring bumpers. Express your answer with the appropriate units. Uspring max = Value Submit Part B VA = μA Request Answer μÅ Find the velocity of block A when the energy stored in the spring bumpers is maximum. Express your answer with the appropriate units. Value Units Units ? ?arrow_forwardAn unstable atomic nucleus of mass 1.62 x 1026 kg initially at rest disintegrates into three particles. One of the particles, of mass 5.06 x 1027 kg, moves in the y direction with a speed of 6.00 x 10 m/s. Another particle, of mass 8.50 x 1027 kg, moves in the x direction with a speed of 4.00 x 10 m/s. (a) Find the velocity of the third particle. m/s (b) Find the total kinetic energy increase in the process.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning