An astronaut in space cannot use a conventional means, such as a scale or balance, to determine the mass of an object. But she does have devices to measure distance and time accurately. She knows her own mass is 78.4 kg, but she is unsure of the mass of a large gas canister in the airless rocket. When this canister is approaching her at 3.50 m/s, she pushes against it, which slows it down to 1.20 m/s (but does not reverse it) and gives her a speed of 2.40 m/s. What is the mass of this canister?
Want to see the full answer?
Check out a sample textbook solutionChapter 8 Solutions
University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
Additional Science Textbook Solutions
College Physics: A Strategic Approach (4th Edition)
College Physics
Essential University Physics: Volume 1 (3rd Edition)
Essential University Physics (3rd Edition)
Introduction to Electrodynamics
- To lift off from the Moon, a 9.50 105 kg rocket needs a thrust larger than the force of gravity. If the exhaust velocity is 4.25 103 m/s, at what rate does the exhaust need to be expelled to provide sufficient thrust? The acceleration due to gravity on the Moon is 1.62 m/s2.arrow_forwardA rocket has total mass Mi = 360 kg, including Mfuel = 330 kg of fuel and oxidizer. In interstellar space, it starts from rest at the position x = 0, turns on its engine at time t = 0, and puts out exhaust with relative speed ve = 1 500 m/s at the constant rate k = 2.50 kg/s. The fuel will last for a burn time of Tb = Mfuel/k = 330 kg/(2.5 kg/s) = 132 s. (a) Show that during the burn the velocity of the rocket as a function of time is given by v(t)=veln(1ktMi) (b) Make a graph of the velocity of the rocket as a function of time for times running from 0 to 132 s. (c) Show that the acceleration of the rocket is a(t)=kveMikt (d) Graph the acceleration as a function of time. (c) Show that the position of the rocket is x(t)=ve(Mikt)ln(1ktMi)+vet (f) Graph the position during the burn as a function of time.arrow_forwardAn astronaut out on a spacewalk to construct a new section of the International Space Station walks with a constant velocity of 2.00 m/s on a flat sheet of metal placed on a flat, frictionless, horizontal honeycomb surface linking the two parts of the station. The mass of the astronaut is 75.0 kg, and the mass of the sheet of metal is 245 kg. a. What is the velocity of the metal sheet relative to the honeycomb surface? b. What is the speed of the astronaut relative to the honeycomb surface?arrow_forward
- How much fuel would be needed for a 1000-kg rocket (this is its mass with no fuel) to take off from Earth and reach 1000 m/s in 30 s? The exhaust speed is 1000 m/s.arrow_forwardA space probe, initially at rest, undergoes an internal mechanical malfunction and breaks into three pieces. One piece of mass ml = 48.0 kg travels in the positive x-direction at 12.0 m/s, and a second piece of mass m2 = 62.0 kg travels in the xy-plane at an angle of 105 at 15.0 m/s. The third piece has mass m3 = 112 kg. (a) Sketch a diagram of the situation, labeling the different masses and their velocities, (b) Write the general expression for conservation of momentum in the x- and y-directions in terms of m1, m2, m3, v1, v2 and v3 and the sines and cosines of the angles, taking to be the unknown angle, (c) Calculate the final x-components of the momenta of m1 and m2. (d) Calculate the final y-components of the momenta of m1 and m2. (e) Substitute the known momentum components into the general equations of momentum for the x- and y-directions, along with the known mass m3. (f) Solve the two momentum equations for v3 cos and v3 sin , respectively, and use the identity cos2 + sin2 = 1 to obtain v3. (g) Divide the equation for v3 sin by that for v3 cos to obtain tan , then obtain the angle by taking the inverse tangent of both sides, (h) In general, would three such pieces necessarily have to move in the same plane? Why?arrow_forwardA girl of mass mg is standing on a plank of mass mp. Both are originally at rest on a frozen lake that constitutes a frictionless, flat surface. The girl begins to walk along the plank at a constant velocity vgp to the right relative to the plank. (The subscript gp denotes the girl relative to plank.) (a) What is the velocity vpi of the plank relative to the surface of the ice? (b) What is the girls velocity vgi relative to the ice surface?arrow_forward
- Figure P9.59a shows an overhead view of the configuration of two pucks of mass In on frictionless ice. The pucks are tied together with a string of length 1' and negligible mass. At time t = 0, a constant force of magnitude F begins to pull to the right on the center point of the string. At time t, the moving pucks strike each other and stick together. At this time, the force has moved through a distance 4 and the pucks have attained a speed v (Fig. P9.59b). (a) What is v in terms of F, d, e, and in? (b) How much of the energy transferred into the system by work done by the force has been transformed to internal energy?arrow_forwardA 68.5-kg astronaut is doing a repair in space on the orbiting space station. She throws a 2.25-kg tool away from her at 3.20 m/s relative to the space station. With what speed and in what direction will she begin to move?arrow_forwardA man walks up to you and hands you an energy drink with mass 0.4 kg. You decide energy drinks aren't for you and throw it on the ground. At the moment the energy drink leaves your hand, it is moving downwards with a speed of 7 m/s and is 1 meter above the ground. Calculate the speed of the energy drink in m/s just before it impacts the ground. As before, assume g = 10 m/s^2. You may neglect air friction. Round your answer to one decimal place.arrow_forward
- During a spacewalk, Dmitri finds himself floating 3 m from his space station's airlock. He only has one minute of air left. He has one detachable 10 kg toolkit, which he can toss to propel himself toward safety. How fast will he need to move to reach the airlock before he runs out of air?arrow_forwardA spaceship at rest relative to a nearby star in interplanetary space has a total mass of 2.00 ✕ 104 kg. Its engines fire at t = 0, steadily burning fuel at 79.3 kg/s with an exhaust speed of 4.50 ✕ 103 m/s. Calculate the spaceship's acceleration at t = 0, mass at t = 135 s, acceleration at t = 135 s, and speed at t = 135 s, relative to the same nearby star. HINT (a) acceleration at t = 0 (Enter the magnitude. Enter your answer in m/s2.) m/s2 (b) mass at t = 135 s (Enter your answer in kg.) kg (c) acceleration at t = 135 s (Enter the magnitude. Enter your answer in m/s2.) m/s2 (d) speed at t = 135 s (Enter your answer in m/s.) m/sarrow_forwardA 68.5-kg astronaut is doing a repair in space on the orbiting space station. She throws a 2.25-kg tool away from her at 3. 20 m/s. With what speed and in what direction will she begin to move?arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning