Two objects of mass M and 5M are at rest on a horizontal, frictionless table with a compressed spring of negligible mass between them. When the spring is released, which of the following statements are true? (a) The two objects receive equal magnitudes of momentum, (b) The two objects receive equal amounts of kinetic energy from the spring, (c) The heavier object gains more kinetic energy than the lighter object, (d) The lighter object gains more kinetic energy than the heavier object. Explain your reasoning in each case.
Want to see the full answer?
Check out a sample textbook solutionChapter 8 Solutions
University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
Additional Science Textbook Solutions
Conceptual Physics (12th Edition)
Life in the Universe (4th Edition)
Conceptual Physical Science (6th Edition)
An Introduction to Thermal Physics
College Physics: A Strategic Approach (3rd Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
- The momentum of an object is increased by a factor of 4 in magnitude. By what factor is its kinetic energy changed? (a) 16 (b) 8 (c) 4 (d) 2 (e) 1arrow_forwardA hockey puck of mass 150 g is sliding due east on a frictionless table with a speed of 10 m/s. Suddenly, a constant force of magnitude 5 N and direction due north is applied to the puck for 1.5 s. Find the north and east components of the momentum at the end of the 1.3-s interval.arrow_forwardA massive tractor is rolling down a country road. In a perfectly inelastic collision, a small sports car runs into the machine from behind. (i) Which vehicle experiences a change in momentum of larger magnitude? (a) The car does. (b) The tractor does. (c) Their momentum changes are the same size. (d) It could be either vehicle. (ii) Which vehicle experiences a larger change in kinetic energy? (a) The car does. (b) The tractor does. (c) Their kinetic energy changes are the same size. (d) It could be either vehicle.arrow_forward
- A mother pushes her son in a stroller at a constant speed of 1.52 m/s. The boy tosses a 56.7-g tennis ball straight up at 1.75 m/s and catches it. The boys father sits on a bench and watches. a. According to the mother, what are the balls initial and final momenta? b. According to the father, what are the balls initial and final momenta? c. According to the mother, is the balls momentum ever zero? If so, when? If not, why not? d. According to the father, is the balls momentum ever zero? If so, when? If not, why not?arrow_forwardThree runaway train cars are moving on a frictionless, horizontal track in a railroad yard as shown in Figure P11.73. The first car, with mass m1 = 1.50 103 kg, is moving to the right with speed v1 = 10.0 m /s; the second car, with mass m2 = 2.50 103 kg, is moving to the left with speed v2 = 5.00 m/s, and the third car, with mass m3 = 1.20 103 kg, is moving to the left with speed v3 = 8.00 m /s. The three railroad cars collide at the same instant and couple, forming a train of three cars. a. What is the final velocity of the train cars immediately after the collision? b. Would the answer to part (a) change if the three cars did not collide at the same instant? Explain. FIGURE P11.73arrow_forwardYou hold a slingshot at arms length, pull the light elastic band back to your chin, and release it to launch a pebble horizontally with speed 200 cm/s. With the same procedure, you fire a bean with speed 600 cm/s. What is the ratio of the mass of the bean to the mass of the pebble? (a) 19 (b) 13 (c) 1 (d) 3 (e) 9arrow_forward
- The kinetic energy of an object is increased by a factor of 4. By what factor is the magnitude of its momentum changed? (a) 16 (b) 8 (c) 4 (d) 2 (e) 1arrow_forwardA cannon is rigidly attached to a carriage, which can move along horizontal rails but is connected to a post by a large spring, initially unstretchcd and with force constant k = 2.00 104 N/m, as shown in Figure P8.60. The cannon fires a 200-kg projectile at a velocity of 125 m/s directed 45.0 above the horizontal. (a) Assuming that the mass of the cannon and its carriage is 5 000 kg, find the recoil speed of the cannon. (b) Determine the maximum extension of the spring. (c) Find the maximum force the spring exerts on the carriage. (d) Consider the system consisting of the cannon, carriage, and projectile. Is the momentum of this system conserved during the firing? Why or why not?arrow_forwardSand from a stationary hopper falls onto a moving conveyor belt at the rate of 5.00 kg/s as shown in Figure P8.64. The conveyor belt is supported by frictionless rollers and moves at a constant speed of v = 0.750 m/s under the action of a constant horizontal external force Fext supplied by the motor that drives the belt. Find (a) the sands rate of change of momentum in the horizontal direction, (b) the force of friction exerted by the belt on the sand, (c) the external force Fext, (d) the work done by Fext in 1 s, and (e) the kinetic energy acquired by the falling sand each second due to the change in its horizontal motion. (f) Why are the answers to parts (d) and (e) different? Figure P8.64arrow_forward
- A space probe, initially at rest, undergoes an internal mechanical malfunction and breaks into three pieces. One piece of mass ml = 48.0 kg travels in the positive x-direction at 12.0 m/s, and a second piece of mass m2 = 62.0 kg travels in the xy-plane at an angle of 105 at 15.0 m/s. The third piece has mass m3 = 112 kg. (a) Sketch a diagram of the situation, labeling the different masses and their velocities, (b) Write the general expression for conservation of momentum in the x- and y-directions in terms of m1, m2, m3, v1, v2 and v3 and the sines and cosines of the angles, taking to be the unknown angle, (c) Calculate the final x-components of the momenta of m1 and m2. (d) Calculate the final y-components of the momenta of m1 and m2. (e) Substitute the known momentum components into the general equations of momentum for the x- and y-directions, along with the known mass m3. (f) Solve the two momentum equations for v3 cos and v3 sin , respectively, and use the identity cos2 + sin2 = 1 to obtain v3. (g) Divide the equation for v3 sin by that for v3 cos to obtain tan , then obtain the angle by taking the inverse tangent of both sides, (h) In general, would three such pieces necessarily have to move in the same plane? Why?arrow_forwardTwo objects are connected by a light string passing over a light, frictionless pulley as shown in Figure P7.7. The object of mass m1 = 5.00 kg is released from rest at a height h = 4.00 m above the table. Using the isolated system model, (a) determine the speed of the object of mass m2 = 3.00 kg just as the 5.00-kg object hits the table and (b) find the maximum height above the table to which the 3.00-kg object rises.arrow_forwardCan momentum be conserved for a system if there are external forces acting on the system? If so, under what conditions? If not, why not?arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning