
Applied Statics and Strength of Materials (6th Edition)
6th Edition
ISBN: 9780133840728
Author: Limbrunner
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8, Problem 8.25CP
For the following computer problems, any appropriate software may be used. Input prompts should fully explain what is required of the user (the program should be user-friendly). The resulting output should be well labeled and self-explanatory. For spreadsheet problems, any appropriate software may be used.
8.25 Write a program that will calculate rectangular moments of intertia, radii of gyration, and polar moments of inertia for a rectangular area. Both the X-X (horizontal) and Y-Y (vertical) axes should be considered. User input is to be width and height of the rectangular area.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Only 100% sure experts solve it correct complete solutions okk don't use guidelines or ai answers okk will dislike okkk. Only human experts solved it
Airplanes A and B, flying at constant velocity and at the same altitude, are tracking the eye
of hurricane C. The relative velocity of C with respect to A is 300 kph 65.0° South of West,
and the relative velocity of C with respect to B is 375 kph 50.0° South of East.
A
120.0 km
B
1N
1. Determine the relative velocity of B with respect to A.
A ground-based radar indicates that hurricane C is moving
at a speed of 40.0 kph due north.
2. Determine the velocity of airplane A.
3. Determine the velocity of airplane B.
Consider that at the start of the tracking expedition, the
distance between the planes is 120.0 km and their initial
positions are horizontally collinear.
4. Given the velocities obtained in items 2 and 3, should
the pilots of planes A and B be concerned whether the
planes will collide at any given time? Prove using
pertinent calculations. (Hint: x = x + vt)
0
Only 100% sure experts solve it correct complete solutions okk don't use guidelines or ai answers okk will dislike okkk.
Chapter 8 Solutions
Applied Statics and Strength of Materials (6th Edition)
Ch. 8 - Calculate the moment of intertia with respect to...Ch. 8 - Calculate the moment of inertia of the triangular...Ch. 8 - A structural steel wide-flange section is...Ch. 8 - The concrete block shown has wall thicknesses of...Ch. 8 - A rectangle has a base of 6 in. and a height of 12...Ch. 8 - For the area of Problem 8.5 , calculate the exact...Ch. 8 - Check the tabulated moment of inertia for a 300610...Ch. 8 - For the cross section of Problem 8.3 , calculate...Ch. 8 - Calculate the moments of intertia with respect to...Ch. 8 - Calculate the moments of intertia with respect to...
Ch. 8 - The rectangular area shown has a square hole cut...Ch. 8 - For the built-up structural steel member shown,...Ch. 8 - Calculate the moments of inertia about both...Ch. 8 - Calculate the moment of inertia with respect to...Ch. 8 - For the two channels shown, calculated the spacing...Ch. 8 - Compute the radii of gyration about both...Ch. 8 - Two C1015.3 channels area welded together at their...Ch. 8 - Compute the radii of gyration with respect to the...Ch. 8 - Compute the radii of gyration with respect to the...Ch. 8 - Compute the radii of gyration with respect to the...Ch. 8 - Compute the radii of gyration with respect to the...Ch. 8 - Calculate the polar moment of inertia for a...Ch. 8 - Calculate the polar moment of inertia for a...Ch. 8 - For the areas (a) aid (b) of Problem 8.9 ,...Ch. 8 - For the following computer problems, any...Ch. 8 - For the following computer problems, any...Ch. 8 - For the following computer problems, any...Ch. 8 - For the cross section shown, calculate the moments...Ch. 8 - Calculate the moments of inertia of the area shown...Ch. 8 - For the cross-sectional areas shown, calculate the...Ch. 8 - For the cross-sectional areas shown, calculate the...Ch. 8 - Calculate the moments of intertia of the built-up...Ch. 8 - Calculate the moments of inertia about both...Ch. 8 - Calculate lx and ly of the built-up steel members...Ch. 8 - Calculate the least radius of gyration for the...Ch. 8 - A structural steel built-up section is fabricated...Ch. 8 - Calculate the polar moment of inertia for the...Ch. 8 - Determine the polar moment of inertia for the...Ch. 8 - Compute the radii of gyration with respect to the...Ch. 8 - Calculate the polar moment of inertia about the...Ch. 8 - The area of the welded member shown is composed of...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Solve this probem and show all of the workarrow_forwardThe differential equation of a cruise control system is provided by the following equation: WRITE OUT SOLUTION DO NOT USE A COPIED SOLUTION Find the closed loop transfer function with respect to the reference velocity (vr) . a. Find the poles of the closed loop transfer function for different values of K. How does the poles move as you change K? b. Find the step response for different values of K and plot in MATLAB. What can you observe?arrow_forwardSolve this problem and show all of the workarrow_forward
- Determine the minimum applied force P required to move wedge A to the right. The spring is compressed a distance of 175 mm. Neglect the weight of A and B. The coefficient of static friction for all contacting surface is μs = 0.35. Neglect friction at the rollers. k = = 15 kN/m P A B 10°arrow_forwardDO NOT COPY SOLUTION- will report The differential equation of a cruise control system is provided by the following equation: Find the closed loop transfer function with respect to the reference velocity (vr) . a. Find the poles of the closed loop transfer function for different values of K. How does the poles move as you change K? b. Find the step response for different values of K and plot in MATLAB. What can you observe?arrow_forwarda box shaped barge 37m long, 6.4 m beam, floats at an even keel draught of 2.5 m in water density 1.025 kg/m3. If a mass is added and the vessel moves into water density 1000 kg/m3, determine the magnitude of this mass if the fore end and aft end draughts are 2.4m and 3.8m respectively.arrow_forward
- a ship 125m long and 17.5m beam floats in seawater of 1.025 t/m3 at a draught of 8m. the waterplane coefficient is 0.83, block coefficient 0.759 and midship section area coefficient 0.98. calculate i) prismatic coefficient ii) TPC iii) change in mean draught if the vessel moves into water of 1.016 t/m3arrow_forwardc. For the given transfer function, find tp, ts, tr, Mp . Plot the resulting step response. G(s) = 40/(s^2 + 4s + 40) handplot only, and solve for eacharrow_forwardA ship of 9000 tonne displacement floats in fresh water of 1.000 t/m3 at a draught 50 mm below the sea water line. The waterplane area is 1650 m2. Calculate the mass of cargo which must be added so that when entering seawater of 1.025 t/m3 it floats at the seawater line.arrow_forward
- A ship of 15000 tonne displacement floats at a draught of 7 metres in water of 1.000t/cub. Metre.It is required to load the maximum amount of oil to give the ship a draught of 7.0 metre in seawater ofdensity 1.025 t/cub.metre. If the waterplane area is 2150 square metre, calculate the massof oil requiredarrow_forwardA ship of 8000 tonne displacement floats in seawater of 1.025 t/m3 and has a TPC of 14. The vessel moves into fresh water of 1.000 t/m3 and loads 300 tonne of oil fuel. Calculate the change in mean draught.arrow_forwardAuto Controls DONT COPY ANSWERS - will report Perform the partial fraction expansion of the following transfer function and find the impulse response: G(s) = (s/2 + 5/3) / (s^2 + 4s + 6) G(s) =( 6s^2 + 50) / (s+3)(s^2 +4)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- International Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE L

International Edition---engineering Mechanics: St...
Mechanical Engineering
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:CENGAGE L
moment of inertia; Author: NCERT OFFICIAL;https://www.youtube.com/watch?v=A4KhJYrt4-s;License: Standard YouTube License, CC-BY