Concept explainers
(a)
Check whether the statement “In a soil, the effective stress can be greater or less than the pore water pressure” is true or false.
(a)
Answer to Problem 8.1P
The given statement is true.
Explanation of Solution
The clay has low hydraulic conductivity and the compressibility is high. The capillary pressure will occur in this condition. The pore water pressure in this condition is greater than the effective stress.
The hydraulic conductivity for the sand is high. The water will be squeezed out easily. The pore water pressure will be less than the effective stress.
Therefore, the given statement is true.
(b)
Check whether the statement “Upward seepage increases the effective stresses and downward seepage decreases the effective stresses” is true or false.
(b)
Answer to Problem 8.1P
The given statement is false.
Explanation of Solution
Write the equation for effective stress in upward seepage condition as follows:
Refer to the upward seepage concept, when the seepage is upward, the effective stress decreases and the pore water pressure increases.
Write the equation for effective stress in downward seepage condition as follows:
Refer to the downward seepage concept, when the seepage is downward, the effective stress increases and the pore water pressure decreases.
Therefore, the given statement is false.
(c)
Check whether the statement “Quick condition cannot occur when the seepage is downward” is true or false.
(c)
Answer to Problem 8.1P
The given statement is true.
Explanation of Solution
Write the equation for effective stress in upward seepage condition as follows:
When the upward seepage pressure is equal to submerged weight of soil, the effective pressure is equal to zero. i.e.,
This condition is only possible in upward seepage.
Write the equation for effective stress in downward seepage condition as follows:
In downward seepage condition it is not possible that, the downward seepage pressure is equal to submerged weight of soil.
Therefore, the given statement is true.
(d)
Check whether the statement “Seepage force does not depend on the permeability of the soil” is true or false.
(d)
Answer to Problem 8.1P
The given statement is true.
Explanation of Solution
Write the equation to find the seepage force
Here, the thickness of the soil is z, the submerged unit weight is
Refer to the equation, the seepage force is independent of the permeability of the soil.
Therefore, the given statement is true.
(e)
Check whether the statement “Critical hydraulic gradient is greater for loose sands than dense sands” is true or false.
(e)
Answer to Problem 8.1P
The given statement is false.
Explanation of Solution
Critical hydraulic gradient occurs in the upward seepage condition.
When the soil pores are dense, the possibility of occurring the quick sand condition is high. This is due to the spacing between the particles are very less.
Therefore, the given statement is false.
Want to see more full solutions like this?
Chapter 8 Solutions
EBK FUNDAMENTALS OF GEOTECHNICAL ENGINE
- A vertical pole supports a horizontal cable CD and is supported by a ball-and-socket joint at A as shown in the figure below. Cable CD is parallel to the x-z plane (which implies that a vector from C to D has no y-component) and is oriented at an angle = 20° from the x-y plane. The distances are given as h = 10 m, b = 6 m, a = 9 m, and d = 4 m. D C a B Determine the following forces for this system if there is a 15 kN tension carried in cable CD. Report all answers in units of kN with 1 decimal place of precision. For the components of the reaction at A, be sure to use a positive or negative sign to indicate the direction of the force (negative signs if the force acts in the negative axial direction). The magnitude of the tension force in cable BE, TBE = KN ☑ The magnitude of the tension force in cable BF, TBF = KN The x-component of the reaction at joint A, Ax = ☑ KN The y-component of the reaction at joint A, A, = KN The z-component of the reaction at joint A, Az = KN ☑arrow_forwardA vertical pole supports a horizontal cable CD and is supported by a ball-and-socket joint at A as shown in the figure below. Cable CD is parallel to the x-z plane (which implies that a vector from C to D has no y-component) and is oriented at an angle : = 20° from the x-y plane. The distances are given as h = 10 m, b = 6 m, a = 9 m, and d = 4 m. D C a B x Determine the following forces for this system if there is a 15 kN tension carried in cable CD. Report all answers in units of kN with 1 decimal place of precision. For the components of the reaction at A, be sure to use a positive or negative sign to indicate the direction of the force (negative signs if the force acts in the negative axial direction). The magnitude of the tension force in cable BE, TBE = 4.1 KN The magnitude of the tension force in cable BF, TBF = 41.1 KN The x-component of the reaction at joint A, Ax = 309.C KN ®®®® F The y-component of the reaction at joint A, Ay = -216. KN The z-component of the reaction at…arrow_forwardA small barrel weighing 400 N is lifted by a pair of tongs as shown. Knowing that h = 200 mm, L₁ = 400 mm, L2 = 120 mm and L3 = 200 mm, determine the magnitude of the forces exerted on member ABD of this machine structure. C L2 A P L1 L3 B D Report your answers in units of N with 2 decimal places of precision. N. The magnitude of the force acting at joint B = The magnitude of the force acting at joint D = N.arrow_forward
- A frame is loaded by a force Q = 280 N and supported by pins at points B and C as shown below. The distances are given as a = 0.4 m, b = 0.8 m, c = 0.6 m, d = 2.6 m, and e = 1.5 m. b C C d 11041 A B Q C D e Determine the reactions at joints B and C. Report all answers in units of N with 2 decimal places of precision. Positive signs indicate that a force component acts in the positive axis direction (i.e. up or right), while a negative sign should be used to indicate a force component acting in a negative axis direction (i.e. down or left). The x-component of the reaction force at joint B, Bx = N The y-component of the reaction force at joint B, By = N The x-component of the reaction force at joint C, Cx = N The y-component of the reaction force at joint C, Cy == Narrow_forwardI need help drawing the digram.arrow_forward8 m B 4 m Figure Q1 120 kN 4 marrow_forward
- ** Please do not put the n value as 0.024 it is incorrect. Also, please remember to identify the channel type.arrow_forward7. A rectangular, unfinished concrete channel of 38-ft width is laid on a slope of 8 ft/mi. Determine the flow depth and Froude number of the flow if the flowrate is 400 ft³/s.arrow_forward***Please MAKE SURE to include all parts that I have shown in the 8 steps here and follow them but also show work for the entire problem. Those are all correct I just need the entire worked out problem with all of the work.arrow_forward
- ***When answering the question MAKE SURE to use ALL of these steps and include them in the answer and don't answer the question in a different manner that is different than what is provided here as what is provided is correct (please include the work as well thanks I will like the answer): 1.correct equation: (ΔP / (ρg)) + ΔZ = f * (L / D) * (v^2 / 2g) + (v^2 / 2g) * ΣK_L 2.v = Q / A = 9.17 ft/s 3. Reynolds number: Re = (v * L) / ν = (v * L) / (ρ * μ) = 63,154 4.The pipe is smooth so: ε_d = 0 5.Friction factor from the Moody diagram: f = 0.020 6.Pressure difference: ΔP = P₁ - P₂ = P₁ - 8640 lb_f 7.Head loss due to elevation difference: ΔZ = Z₁ - Z₂ = -10 ft 8.Summation of pipe fittings and losses: ΣK_L = 0.2 + 7 + 2(1.5) + 0.05 = 10.25 9.values to plug in Length of the pipe: L = 20 ft Diameter of the pipe: D = 1/12 ft Fluid density: ρ = 1.94 slugs/ft³ Gravitational acceleration: g = 32.2 ft/s²arrow_forward5. A uniform flow of 110,000 ft³/s is measured in a natural channel that is approximately rectangular in shape with a 2650-ft width and 17.5 ft depth. The water-surface elevation drops 0.37 ft per mile. Based on the computed Manning coefficient, n, characterize the type of natural channel observed. Also compute the Froude number and determine whether the flow is subcritical or supercritical.arrow_forwardFor the gymnasium floor plan shown, determine the dead loads and live loads acting on beam BF and girder AD.arrow_forward
- Fundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningPrinciples of Geotechnical Engineering (MindTap C...Civil EngineeringISBN:9781305970939Author:Braja M. Das, Khaled SobhanPublisher:Cengage Learning