The partial pressure of each gas in the given figure is needed to be determined where the numbers of each type of gas are 5 He , 3Ne and 2Ar . Concept introduction: Partial pressure of a gas in a mixture of gases is the pressure of that gas when it alone. Partial pressure of a gas in terms of its mole fraction and total pressure is, ` P A = χ A × P TOTAL A mole fraction of a molecule in a mixture is the ratio of number of moles of these molecules to sum of number of moles of all molecules in the mixture. The mole fractions can be related to molecule fractions. Equation for molecule fraction of molecule is, molecule fraction of a molecule = numbers of a molecule total number of molecules
The partial pressure of each gas in the given figure is needed to be determined where the numbers of each type of gas are 5 He , 3Ne and 2Ar . Concept introduction: Partial pressure of a gas in a mixture of gases is the pressure of that gas when it alone. Partial pressure of a gas in terms of its mole fraction and total pressure is, ` P A = χ A × P TOTAL A mole fraction of a molecule in a mixture is the ratio of number of moles of these molecules to sum of number of moles of all molecules in the mixture. The mole fractions can be related to molecule fractions. Equation for molecule fraction of molecule is, molecule fraction of a molecule = numbers of a molecule total number of molecules
Solution Summary: The author explains the partial pressure of each gas in a mixture of gases. The mole tion is the ratio of number of moles of these molecules to sum of all molecules in the mixture.
Interpretation: The partial pressure of each gas in the given figure is needed to be determined where the numbers of each type of gas are
5He,3Ne and
2Ar.
Concept introduction:
Partial pressure of a gas in a mixture of gases is the pressure of that gas when it alone.
Partial pressure of a gas in terms of its mole fraction and total pressure is,
`
PA=χA×PTOTAL
A mole fraction of a molecule in a mixture is the ratio of number of moles of these molecules to sum of number of moles of all molecules in the mixture. The mole fractions can be related to molecule fractions.
Determine whether the following reaction is an example of a nucleophilic substitution reaction:
Br
OH
HO
2
--
Molecule A
Molecule B
+
Br
义
ollo
18
Is this a nucleophilic substitution reaction?
If this is a nucleophilic substitution reaction, answer the remaining questions in this table.
Which of the reactants is referred to as the nucleophile in this reaction?
Which of the reactants is referred to as the organic substrate in this reaction?
Use a ŏ + symbol to label the electrophilic carbon that is attacked during the substitution.
Highlight the leaving group on the appropriate reactant.
◇ Yes
O No
O Molecule A
Molecule B
Molecule A
Molecule B
टे