EBK DATABASE CONCEPTS
EBK DATABASE CONCEPTS
7th Edition
ISBN: 9780133777840
Author: AUER
Publisher: VST
bartleby

Concept explainers

bartleby

Videos

Expert Solution & Answer
Book Icon
Chapter 8, Problem 8.15RQ

Explanation of Solution

Fact Table:

Fact table is the focal table of the dimension table that can store measure of the business activities.

  • The qualities of the data present are called as measures.
  • It holds the qualitative or factual data of the entity that are being represented in the fact table.
  • Fact tables are normalized and are present at the center of the star schema.
  • They do contain foreign key in joining the dimension tables...

Blurred answer
Students have asked these similar questions
here is a diagram code : graph LR subgraph Inputs [Inputs] A[Input C (Complete Data)] --> TeacherModel B[Input M (Missing Data)] --> StudentA A --> StudentB end subgraph TeacherModel [Teacher Model (Pretrained)] C[Transformer Encoder T] --> D{Teacher Prediction y_t} C --> E[Internal Features f_t] end subgraph StudentA [Student Model A (Trainable - Handles Missing Input)] F[Transformer Encoder S_A] --> G{Student A Prediction y_s^A} B --> F end subgraph StudentB [Student Model B (Trainable - Handles Missing Labels)] H[Transformer Encoder S_B] --> I{Student B Prediction y_s^B} A --> H end subgraph GroundTruth [Ground Truth RUL (Partial Labels)] J[RUL Labels] end subgraph KnowledgeDistillationA [Knowledge Distillation Block for Student A] K[Prediction Distillation Loss (y_s^A vs y_t)] L[Feature Alignment Loss (f_s^A vs f_t)] D -- Prediction Guidance --> K E -- Feature Guidance --> L G --> K F --> L J -- Supervised Guidance (if available) --> G K…
details explanation and background   We solve this using a Teacher–Student knowledge distillation framework: We train a Teacher model on a clean and complete dataset where both inputs and labels are available. We then use that Teacher to teach two separate Student models:  Student A learns from incomplete input (some sensor values missing). Student B learns from incomplete labels (RUL labels missing for some samples). We use knowledge distillation to guide both students, even when labels are missing. Why We Use Two Students Student A handles Missing Input Features: It receives input with some features masked out. Since it cannot see the full input, we help it by transferring internal features (feature distillation) and predictions from the teacher. Student B handles Missing RUL Labels: It receives full input but does not always have a ground-truth RUL label. We guide it using the predictions of the teacher model (prediction distillation). Using two students allows each to specialize in…
We are doing a custom JSTL custom tag to make display page to access a tag handler.   Write two custom tags: 1) A single tag which prints a number (from 0-99) as words. Ex:    <abc:numAsWords val="32"/>   --> produces: thirty-two   2) A paired tag which puts the body in a DIV with our team colors. Ex:    <abc:teamColors school="gophers" reverse="true">     <p>Big game today</p>     <p>Bring your lucky hat</p>      <-- these will be green text on blue background   </abc:teamColors> Details: The attribute for numAsWords will be just val, from 0 to 99   - spelling, etc... isn't important here. Print "twenty-six" or "Twenty six" ... .  Attributes for teamColors are: school, a "required" string, and reversed, a non-required boolean.   - pick any four schools. I picked gophers, cyclones, hawkeyes and cornhuskers   - each school has two colors. Pick whatever seems best. For oine I picked "cyclones" and       red text on a gold body   - if…
Knowledge Booster
Background pattern image
Computer Science
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Information Systems (MindTap Course...
Computer Science
ISBN:9781305971776
Author:Ralph Stair, George Reynolds
Publisher:Cengage Learning
Text book image
Enhanced Discovering Computers 2017 (Shelly Cashm...
Computer Science
ISBN:9781305657458
Author:Misty E. Vermaat, Susan L. Sebok, Steven M. Freund, Mark Frydenberg, Jennifer T. Campbell
Publisher:Cengage Learning
Text book image
Principles of Information Systems (MindTap Course...
Computer Science
ISBN:9781285867168
Author:Ralph Stair, George Reynolds
Publisher:Cengage Learning
Text book image
Oracle 12c: SQL
Computer Science
ISBN:9781305251038
Author:Joan Casteel
Publisher:Cengage Learning
Text book image
A Guide to SQL
Computer Science
ISBN:9781111527273
Author:Philip J. Pratt
Publisher:Course Technology Ptr
Text book image
Fundamentals of Information Systems
Computer Science
ISBN:9781337097536
Author:Ralph Stair, George Reynolds
Publisher:Cengage Learning
SQL Basics for Beginners | Learn SQL | SQL Tutorial for Beginners | Edureka; Author: edureka;https://www.youtube.com/watch?v=zbMHLJ0dY4w;License: Standard YouTube License, CC-BY