Chemistry: An Atoms-Focused Approach (Second Edition)
2nd Edition
ISBN: 9780393614053
Author: Thomas R. Gilbert, Rein V. Kirss, Stacey Lowery Bretz, Natalie Foster
Publisher: W. W. Norton & Company
expand_more
expand_more
format_list_bulleted
Concept explainers
Want to see more full solutions like this?
Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Part 1
A student carried out an investigation to observe the effect of changing
concentration of sulfuric acid on the breakdown of calcium carbonate
(marble) chips. They changed the concentration of the acid between
each test but kept the size of the marble chips constant. The full equation
for the reaction and a graph of the overall results can be seen below.
CaCO3(s) + H₂SO4(aq) → CaSO4(aq) + CO2(g) + H₂O (1)
a)
b)
Rate of Reaction
*
Concentration of Acid (mol dm³)
Explain, using collision theory, why the student obtained
these results, and state what they could conclude about the
effect of changing concentration of acid on the rate of reaction
between calcium carbonate and sulfuric acid.
If the student had ground up the calcium carbonate chips into
a powder and run the tests again, what would you expect to
happen to the rate of reaction? Briefly explain why by
applying collision theory.
Part 2
The student ran the same experiment, but this time changed the
temperature, increasing it…
What mass of magnesium chloride would be required to produce 12.85 g of magnesium hydroxide by the following reaction?
MgCl2 + NaOH --> Mg(OH)2 + NaCl
A 0.2088 g sample of primary-standard-grade sodium carbonate, Na₂CO₃ (105.99 g/mol) was dissolved in water and diluted to 100.00 mL in a volumetric flask. A 30.00-mL portion of this solution was used to standardize a hydrochloric acid (HCl) solution based on the following reaction: CO₃²⁻ + 2H⁺ → H₂O + CO₂. If 36.09 mL of the HCl solution was used to reach the end point, what is the molarity of the HCl?
Chapter 8 Solutions
Chemistry: An Atoms-Focused Approach (Second Edition)
Ch. 8 - Prob. 8.1VPCh. 8 - Prob. 8.2VPCh. 8 - Prob. 8.3VPCh. 8 - Prob. 8.4VPCh. 8 - Prob. 8.5VPCh. 8 - Prob. 8.6VPCh. 8 - Prob. 8.7VPCh. 8 - Prob. 8.8VPCh. 8 - Prob. 8.9VPCh. 8 - Prob. 8.10VP
Ch. 8 - Prob. 8.11QACh. 8 - Prob. 8.12QACh. 8 - Prob. 8.13QACh. 8 - Prob. 8.14QACh. 8 - Prob. 8.15QACh. 8 - Prob. 8.16QACh. 8 - Prob. 8.17QACh. 8 - Prob. 8.18QACh. 8 - Prob. 8.19QACh. 8 - Prob. 8.20QACh. 8 - Prob. 8.21QACh. 8 - Prob. 8.22QACh. 8 - Prob. 8.23QACh. 8 - Prob. 8.24QACh. 8 - Prob. 8.25QACh. 8 - Prob. 8.26QACh. 8 - Prob. 8.27QACh. 8 - Prob. 8.28QACh. 8 - Prob. 8.29QACh. 8 - Prob. 8.30QACh. 8 - Prob. 8.31QACh. 8 - Prob. 8.32QACh. 8 - Prob. 8.33QACh. 8 - Prob. 8.34QACh. 8 - Prob. 8.35QACh. 8 - Prob. 8.36QACh. 8 - Prob. 8.37QACh. 8 - Prob. 8.38QACh. 8 - Prob. 8.39QACh. 8 - Prob. 8.40QACh. 8 - Prob. 8.41QACh. 8 - Prob. 8.42QACh. 8 - Prob. 8.43QACh. 8 - Prob. 8.44QACh. 8 - Prob. 8.45QACh. 8 - Prob. 8.46QACh. 8 - Prob. 8.47QACh. 8 - Prob. 8.48QACh. 8 - Prob. 8.49QACh. 8 - Prob. 8.50QACh. 8 - Prob. 8.51QACh. 8 - Prob. 8.52QACh. 8 - Prob. 8.53QACh. 8 - Prob. 8.54QACh. 8 - Prob. 8.55QACh. 8 - Prob. 8.56QACh. 8 - Prob. 8.57QACh. 8 - Prob. 8.58QACh. 8 - Prob. 8.59QACh. 8 - Prob. 8.60QACh. 8 - Prob. 8.61QACh. 8 - Prob. 8.62QACh. 8 - Prob. 8.63QACh. 8 - Prob. 8.64QACh. 8 - Prob. 8.65QACh. 8 - Prob. 8.66QACh. 8 - Prob. 8.67QACh. 8 - Prob. 8.68QACh. 8 - Prob. 8.69QACh. 8 - Prob. 8.70QACh. 8 - Prob. 8.71QACh. 8 - Prob. 8.72QACh. 8 - Prob. 8.73QACh. 8 - Prob. 8.74QACh. 8 - Prob. 8.75QACh. 8 - Prob. 8.76QACh. 8 - Prob. 8.77QACh. 8 - Prob. 8.78QACh. 8 - Prob. 8.79QACh. 8 - Prob. 8.80QACh. 8 - Prob. 8.81QACh. 8 - Prob. 8.82QACh. 8 - Prob. 8.83QACh. 8 - Prob. 8.84QACh. 8 - Prob. 8.85QACh. 8 - Prob. 8.86QACh. 8 - Prob. 8.87QACh. 8 - Prob. 8.88QACh. 8 - Prob. 8.89QACh. 8 - Prob. 8.90QACh. 8 - Prob. 8.91QACh. 8 - Prob. 8.92QACh. 8 - Prob. 8.93QACh. 8 - Prob. 8.94QACh. 8 - Prob. 8.95QACh. 8 - Prob. 8.96QACh. 8 - Prob. 8.97QACh. 8 - Prob. 8.98QACh. 8 - Prob. 8.99QACh. 8 - Prob. 8.100QACh. 8 - Prob. 8.101QACh. 8 - Prob. 8.102QACh. 8 - Prob. 8.103QACh. 8 - Prob. 8.104QACh. 8 - Prob. 8.105QACh. 8 - Prob. 8.106QACh. 8 - Prob. 8.107QACh. 8 - Prob. 8.108QACh. 8 - Prob. 8.109QACh. 8 - Prob. 8.110QACh. 8 - Prob. 8.111QACh. 8 - Prob. 8.112QACh. 8 - Prob. 8.113QACh. 8 - Prob. 8.114QACh. 8 - Prob. 8.115QACh. 8 - Prob. 8.116QACh. 8 - Prob. 8.117QACh. 8 - Prob. 8.118QACh. 8 - Prob. 8.119QACh. 8 - Prob. 8.120QACh. 8 - Prob. 8.121QACh. 8 - Prob. 8.122QACh. 8 - Prob. 8.123QACh. 8 - Prob. 8.124QACh. 8 - Prob. 8.125QACh. 8 - Prob. 8.126QACh. 8 - Prob. 8.127QACh. 8 - Prob. 8.128QACh. 8 - Prob. 8.129QACh. 8 - Prob. 8.130QA
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Write balanced chemical equations for the following reactions. (a) The reaction of aluminum and iron(III) oxide to form iron and aluminum oxide (known as the thermite reaction). (b) The reaction of carbon and water at high temperature to form a mixture of gaseous CO and H2 (known as water gas and once used as a fuel). (c) The reaction of liquid silicon tetrachloride and magnesium forming silicon and magnesium chloride. This is one step in the preparation of ultrapure silicon used in the semiconductor industryarrow_forwardThe carbon dioxide exhaled in the breath of astronauts is often removed from the spacecraft by reaction with lithium hydroxide 2LiOH(s)+CO2(g)Li2CO3(s)+H2O(l) Estimate the grams of lithium hydroxide required per astronaut per day. Assume that each astronaut requires 2.50 103 kcal of energy per day. Further assume that this energy can be equated to the heat of combustion of a quantity of glucose, C6H12O6, to CO2(g) and H2O(l). From the amount of glucose required to give 2.50 103 kcal of heat, calculate the amount of CO2 produced and hence the amount of LiOH required. The H for glucose(s) is 1273 kJ/mol.arrow_forwardThree reactions very important to the semiconductor industry are The reduction of silicon dioxide to crude silicon, SiO2(s) + 2 C(s) → Si(s) + 2 CO(g) ΔrH° = 689.9 kJ/mol The formation of silicon tetrachloride from crude silicon, Si(s) + 2 Cl2(g) → SiCl4(g) ΔrH° = −657.01 kJ/mol The reduction of silicon tetrachloride to pure silicon with magnesium, SiCl4(g) + 2 Mg(s) → 2 MgCl2(s) + Si(s) ΔrH° = −625.6 kJ/mol Calculate the overall enthalpy change when 1.00 mol sand, SiO2, changes into very pure silicon by this series of reactions.arrow_forward
- Calculate the molarity of AgNO3 in a solution prepared by dissolving 1.44 g AgNO3 in enough water to form 1.00 L solution.arrow_forwardWrite balanced net ionic equations for the following reactions in acid solution. (a) Liquid hydrazine reacts with an aqueous solution of sodium bromate. Nitrogen gas and bromide ions are formed. (b) Solid phosphorus (P4) reacts with an aqueous solution of nitrate to form nitrogen oxide gas and dihydrogen phosphate (H2PO4-) ions. (c) Aqueous solutions of potassium sulfite and potassium permanganate react. Sulfate and manganese(II) ions are formed.arrow_forwardAccording to the Resource Conservation and Recovery Act (RCRA), waste material is classified as toxic and must be handled as hazardous if the lead concentration exceeds 5 mg/L. By adding chloride ion, the lead ion will precipitate as PbCl2, which can be separated from the liquid portion. Once the lead has been removed, the rest of the waste can be sent to a conventional waste treatment facility. How many grams of sodium chloride must be added to 500 L of a waste solution to reduce the concentration of the Pb2+ ion from 10 to 5 mg/L?arrow_forward
- Ethanol, C2H5OH, is a gasoline additive that can be produced by fermentation of glucose. C6H12O62C2H5OH+2CO2 (a) Calculate the mass (g) of ethanol produced by the fermentation of 1.000 lb glucose. (b) Gasohol is a mixture of 10.00 mL ethanol per 90.00 mL gasoline. Calculate the mass (in g) of glucose required to produce the ethanol in 1.00 gal gasohol. Density of ethanol = 0.785 g/mL. (c) By 2022, the U. S. Energy Independence and Security Act calls for annual production of 3.6 1010 gal of ethanol, no more than 40% of it produced by fermentation of corn. Fermentation of 1 ton (2.2 103 lb) of corn yields approximately 106 gal of ethanol. The average corn yield in the United States is about 2.1 105 lb per 1.0 105 m2. Calculate the acreage (in m2) required to raise corn solely for ethanol production in 2022 in the United States.arrow_forwardWhat is Hrxn for reaction of iron(III) oxide and carbon monoxide to give iron metal and carbon dioxide gas? Use the following reactions: 4Fe(s)+3O2(g)2Fe2O3(s)H=1648.4kJ4CO(g)+O2(g)2CO3(g)H=565.98kJarrow_forward87. What volume of 0.151 N NaOH is required to neutralize 24.2 mL of 0.125 N H2SO4? What volume of 0.151 N NaOH is required to neutralize 24.2 n1L of 0.125 M H2SO4?arrow_forward
- What is the molarity of a solution of sodium hydrogen sulfate that is prepared by dissolving 9.21 g NaHSO4 in enough water to form 2.00-L solution? What is the molarity of each ion in the solution?arrow_forwardUse the appropriate tables to calculate H for (a) the reaction between MgC03(s) and a strong acid to give Mg2+(aq), CO2(g), and water. (b) the precipitation of iron(III) hydroxide from the reaction between iron(III) and hydroxide ions.arrow_forward2 NaN3(5) 2 Na(s) + 3 N2(g) --> One of the products of this reaction is nitrogen gas (N2). Look closely: For every one molecule of sodium azide that ignites, how many molecules of gas are formed?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Calorimetry Concept, Examples and Thermochemistry | How to Pass Chemistry; Author: Melissa Maribel;https://www.youtube.com/watch?v=nSh29lUGj00;License: Standard YouTube License, CC-BY