
Write a balanced equation for the preparation of (a) molecular oxygen, (b) ammonia, (c) carbon dioxide, (d) molecular hydrogen, (e) calcium oxide. Indicate the physical state of the reactants and products in each equation.
(a)

Interpretation:
The balanced equation for the preparation of molecular oxygen has to be given indicating the physical state of the reactants and products.
Concept Introduction:
- Chemical equation is the representation of a chemical reaction, in which the reactants and products of the reactions are represented left and right side of an arrow respectively by using their respective chemical formulas.
- Reactant of a chemical reaction is the substrate compounds or the compounds which undergo a chemical reaction.
- Product of a chemical reaction is the produced compounds or the compounds formed after a chemical reaction.
- Balanced chemical equation of a reaction is written according to law of conservation of mass.
Answer to Problem 8.117QP
The balanced equation for the preparation of molecular oxygen can be given as:
Explanation of Solution
Molecular oxygen is prepared from
Here, the number of each element on both sides is made equal by giving the coefficient 2 for the reactant
Therefore,
The balanced equation for the preparation of molecular oxygen can be given as:
(b)

Interpretation:
The balanced equation for the preparation of ammonia has to be given indicating the physical state of the reactants and products.
Concept Introduction:
- Chemical equation is the representation of a chemical reaction, in which the reactants and products of the reactions are represented left and right side of an arrow respectively by using their respective chemical formulas.
- Reactant of a chemical reaction is the substrate compounds or the compounds which undergo a chemical reaction.
- Product of a chemical reaction is the produced compounds or the compounds formed after a chemical reaction.
- Balanced chemical equation of a reaction is written according to law of conservation of mass.
Answer to Problem 8.117QP
The balanced equation for the preparation of ammonia can be given as:
Explanation of Solution
Ammonia is prepared by the reaction between nitrogen and hydrogen. Reaction for the preparation of ammonia can be given as:
Here, the number of each element on both sides is made equal by giving the coefficient 2 for the product
Therefore,
The balanced equation for the preparation of ammonia can be given as:
(c)

Interpretation:
The balanced equation for the preparation of carbon dioxide has to be given indicating the physical state of the reactants and products.
Concept Introduction:
- Chemical equation is the representation of a chemical reaction, in which the reactants and products of the reactions are represented left and right side of an arrow respectively by using their respective chemical formulas.
- Reactant of a chemical reaction is the substrate compounds or the compounds which undergo a chemical reaction.
- Product of a chemical reaction is the produced compounds or the compounds formed after a chemical reaction.
- Balanced chemical equation of a reaction is written according to law of conservation of mass.
Answer to Problem 8.117QP
The balanced equation for the preparation of carbon dioxide can be given as:
Explanation of Solution
Carbon dioxide is prepared from
Here, the number of each element on both sides is equal.
Therefore,
The balanced equation for the preparation of carbon dioxide can be given as:
(d)

Interpretation:
The balanced equation for the preparation of molecular hydrogen has to be given indicating the physical state of the reactants and products.
Concept Introduction:
- Chemical equation is the representation of a chemical reaction, in which the reactants and products of the reactions are represented left and right side of an arrow respectively by using their respective chemical formulas.
- Reactant of a chemical reaction is the substrate compounds or the compounds which undergo a chemical reaction.
- Product of a chemical reaction is the produced compounds or the compounds formed after a chemical reaction.
- Balanced chemical equation of a reaction is written according to law of conservation of mass.
Answer to Problem 8.117QP
The balanced equation for the preparation of molecular hydrogen can be given as:
Explanation of Solution
Molecular hydrogen is prepared by the reaction between
Here, the number of each element on both sides is equal.
Therefore,
The balanced equation for the preparation of molecular hydrogen can be given as:
(e)

Interpretation:
The balanced equation for the preparation of calcium oxide has to be given indicating the physical state of the reactants and products.
Concept Introduction:
- Chemical equation is the representation of a chemical reaction, in which the reactants and products of the reactions are represented left and right side of an arrow respectively by using their respective chemical formulas.
- Reactant of a chemical reaction is the substrate compounds or the compounds which undergo a chemical reaction.
- Product of a chemical reaction is the produced compounds or the compounds formed after a chemical reaction.
- Balanced chemical equation of a reaction is written according to law of conservation of mass.
Answer to Problem 8.117QP
The balanced equation for the preparation of calcium oxide can be given as:
Explanation of Solution
Calcium oxide is prepared from
Here, the number of each element on both sides is equal.
Therefore,
The balanced equation for the preparation of calcium oxide can be given as:
Want to see more full solutions like this?
Chapter 8 Solutions
Chemistry
Additional Science Textbook Solutions
HUMAN ANATOMY
College Physics: A Strategic Approach (3rd Edition)
Human Biology: Concepts and Current Issues (8th Edition)
Microbiology: An Introduction
General, Organic, and Biological Chemistry - 4th edition
Campbell Essential Biology (7th Edition)
- curved arrows are used to illustrate the flow of electrons. using the provided starting and product structures, draw the cured electron-pushing arrows for thw following reaction or mechanistic steps. be sure to account for all bond-breaking and bond making stepsarrow_forwardUsing the graphs could you help me explain the answers. I assumed that both graphs are proportional to the inverse of time, I think. Could you please help me.arrow_forwardSynthesis of Dibenzalacetone [References] Draw structures for the carbonyl electrophile and enolate nucleophile that react to give the enone below. Question 1 1 pt Question 2 1 pt Question 3 1 pt H Question 4 1 pt Question 5 1 pt Question 6 1 pt Question 7 1pt Question 8 1 pt Progress: 7/8 items Que Feb 24 at You do not have to consider stereochemistry. . Draw the enolate ion in its carbanion form. • Draw one structure per sketcher. Add additional sketchers using the drop-down menu in the bottom right corner. ⚫ Separate multiple reactants using the + sign from the drop-down menu. ? 4arrow_forward
- Shown below is the mechanism presented for the formation of biasplatin in reference 1 from the Background and Experiment document. The amounts used of each reactant are shown. Either draw or describe a better alternative to this mechanism. (Note that the first step represents two steps combined and the proton loss is not even shown; fixing these is not the desired improvement.) (Hints: The first step is correct, the second step is not; and the amount of the anhydride is in large excess to serve a purpose.)arrow_forwardHi I need help on the question provided in the image.arrow_forwardDraw a reasonable mechanism for the following reaction:arrow_forward
- Draw the mechanism for the following reaction: CH3 CH3 Et-OH Et Edit the reaction by drawing all steps in the appropriate boxes and connecting them with reaction arrows. Add charges where needed. Electron-flow arrows should start on the electron(s) of an atom or a bond and should end on an atom, bond, or location where a new bond should be created. H± EXP. L CONT. י Α [1] осн CH3 а CH3 :Ö Et H 0 N о S 0 Br Et-ÖH | P LL Farrow_forward20.00 mL of 0.150 M NaOH is titrated with 37.75 mL of HCl. What is the molarity of the HCl?arrow_forward20.00 mL of 0.025 M HCl is titrated with 0.035 M KOH. What volume of KOH is needed?arrow_forward
- 20.00 mL of 0.150 M NaOH is titrated with 37.75 mL of HCl. What is the molarity of the HCl?arrow_forward20.00 mL of 0.025 M HCl is titrated with 0.035 M KOH. What volume of KOH is needed?arrow_forward20.00 mL of 0.150 M HCl is titrated with 37.75 mL of NaOH. What is the molarity of the NaOH?arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning





