Write a balanced equation for the preparation of (a) molecular oxygen, (b) ammonia, (c) carbon dioxide, (d) molecular hydrogen, (e) calcium oxide. Indicate the physical state of the reactants and products in each equation.
(a)
Interpretation:
The balanced equation for the preparation of molecular oxygen has to be given indicating the physical state of the reactants and products.
Concept Introduction:
- Chemical equation is the representation of a chemical reaction, in which the reactants and products of the reactions are represented left and right side of an arrow respectively by using their respective chemical formulas.
- Reactant of a chemical reaction is the substrate compounds or the compounds which undergo a chemical reaction.
- Product of a chemical reaction is the produced compounds or the compounds formed after a chemical reaction.
- Balanced chemical equation of a reaction is written according to law of conservation of mass.
Answer to Problem 8.117QP
The balanced equation for the preparation of molecular oxygen can be given as:
Explanation of Solution
Molecular oxygen is prepared from
Here, the number of each element on both sides is made equal by giving the coefficient 2 for the reactant
Therefore,
The balanced equation for the preparation of molecular oxygen can be given as:
(b)
Interpretation:
The balanced equation for the preparation of ammonia has to be given indicating the physical state of the reactants and products.
Concept Introduction:
- Chemical equation is the representation of a chemical reaction, in which the reactants and products of the reactions are represented left and right side of an arrow respectively by using their respective chemical formulas.
- Reactant of a chemical reaction is the substrate compounds or the compounds which undergo a chemical reaction.
- Product of a chemical reaction is the produced compounds or the compounds formed after a chemical reaction.
- Balanced chemical equation of a reaction is written according to law of conservation of mass.
Answer to Problem 8.117QP
The balanced equation for the preparation of ammonia can be given as:
Explanation of Solution
Ammonia is prepared by the reaction between nitrogen and hydrogen. Reaction for the preparation of ammonia can be given as:
Here, the number of each element on both sides is made equal by giving the coefficient 2 for the product
Therefore,
The balanced equation for the preparation of ammonia can be given as:
(c)
Interpretation:
The balanced equation for the preparation of carbon dioxide has to be given indicating the physical state of the reactants and products.
Concept Introduction:
- Chemical equation is the representation of a chemical reaction, in which the reactants and products of the reactions are represented left and right side of an arrow respectively by using their respective chemical formulas.
- Reactant of a chemical reaction is the substrate compounds or the compounds which undergo a chemical reaction.
- Product of a chemical reaction is the produced compounds or the compounds formed after a chemical reaction.
- Balanced chemical equation of a reaction is written according to law of conservation of mass.
Answer to Problem 8.117QP
The balanced equation for the preparation of carbon dioxide can be given as:
Explanation of Solution
Carbon dioxide is prepared from
Here, the number of each element on both sides is equal.
Therefore,
The balanced equation for the preparation of carbon dioxide can be given as:
(d)
Interpretation:
The balanced equation for the preparation of molecular hydrogen has to be given indicating the physical state of the reactants and products.
Concept Introduction:
- Chemical equation is the representation of a chemical reaction, in which the reactants and products of the reactions are represented left and right side of an arrow respectively by using their respective chemical formulas.
- Reactant of a chemical reaction is the substrate compounds or the compounds which undergo a chemical reaction.
- Product of a chemical reaction is the produced compounds or the compounds formed after a chemical reaction.
- Balanced chemical equation of a reaction is written according to law of conservation of mass.
Answer to Problem 8.117QP
The balanced equation for the preparation of molecular hydrogen can be given as:
Explanation of Solution
Molecular hydrogen is prepared by the reaction between
Here, the number of each element on both sides is equal.
Therefore,
The balanced equation for the preparation of molecular hydrogen can be given as:
(e)
Interpretation:
The balanced equation for the preparation of calcium oxide has to be given indicating the physical state of the reactants and products.
Concept Introduction:
- Chemical equation is the representation of a chemical reaction, in which the reactants and products of the reactions are represented left and right side of an arrow respectively by using their respective chemical formulas.
- Reactant of a chemical reaction is the substrate compounds or the compounds which undergo a chemical reaction.
- Product of a chemical reaction is the produced compounds or the compounds formed after a chemical reaction.
- Balanced chemical equation of a reaction is written according to law of conservation of mass.
Answer to Problem 8.117QP
The balanced equation for the preparation of calcium oxide can be given as:
Explanation of Solution
Calcium oxide is prepared from
Here, the number of each element on both sides is equal.
Therefore,
The balanced equation for the preparation of calcium oxide can be given as:
Want to see more full solutions like this?
Chapter 8 Solutions
Chemistry
Additional Science Textbook Solutions
Chemistry: Structure and Properties
Living by Chemistry
Chemistry: The Central Science (13th Edition)
Essential Organic Chemistry (3rd Edition)
Chemistry: The Molecular Nature of Matter
- (a) Which poisonous gas is evolved when white phosphorus is heated with Cone. NaOH solution? Write the chemical equation. (b) Write the formula of first noble gas compound prepared by N. Bartlett. What inspired N. Bartlett to prepare this compound? (c) Fluorine is a stronger oxidising agent than chlorine. Why? (d)Write one use of chlorine gas.arrow_forwardThe oxygen and nitrogen families have some obvious similarities and differences.(a) State two general physical similarities between Group 5A(15) and 6A(16) elements.(b) State two general chemical similarities between Group 5A(15) and 6A(16) elements.(c) State two chemical similarities between P and S.(d) State two physical similarities between N and O.(e) State two chemical differences between N and O.arrow_forwardWhen 25 g of lead (II) nitrate, Pb(NO3)2, is mixed with 15 g of sodium iodide in water, a reaction occurs and this produces sodium nitrate and solid lead (II) iodide. (a) Write a balanced equation for the reaction. (b) Calculate the theoretical amount of lead (II) iodide produced.arrow_forward
- A certain element, M, is a main-group metal that reacts with chlorine to give a compound with the chemical formula MCl2 and with oxygen to give the compound MO.(a) To which group in the periodic table does element M belong?(b) The chloride contains 44.7% chlorine by mass. Name the element Marrow_forwardIf you blow carbon dioxide gas into a solution of calcium hydroxide, a milky-white precipitate of calcium carbonate forms. Write a balanced equation for the formation of calcium carbonate in this reaction. Calcium oxide is prepared by heating limestone (cal- cium carbonate, CaCO3) to a high temperature, at which point it decomposes to calcium oxide and carbon dioxide. Write a balanced equation for this preparation of calcium oxide. . The brilliant white light in some firework displays is produced by burning magnesium in air. The magnesium reacts with oxygen in the air to form magnesium oxide. Write a balanced equation for this reaction. Answer true or false. (a) Formula weight is the mass of a compound expressed in grams. (b) 1 atomic mass unit (amu) is equal to 1 gram (g). (c) The formula weight of H2O is 18 amu. (d) The molecular weight of H2O is 18 amu. (e) The molecular weight of a covalent compound is the same as its formula weight.arrow_forwardThe oxygen and nitrogen families have some obvious sim-ilarities and differences.(a) State two general physical similarities between Group5A(15) and 6A(16) elements. (b) State two general chemical similarities between Group5A(15) and 6A(16) elements.(c) State two chemical similarities between P and S.(d) State two physical similarities between N and O.(e) State two chemical differences between N and O.arrow_forward
- Write the balanced chemical equation for the reaction of these pairs of reactants: (a) Calcium and bromine (b) Aluminum and oxygenarrow_forwardChlorine reacts with oxygen to form Cl2O7. (a) What is the name of this product (see Table 2.6)? (b) Write a balanced equation for the formation of Cl2O7(l) from the elements. (c) Under usual conditions, Cl2O7 is a colorless liquid with a boiling point of 81℃. Is this boiling point expected or surprising? (d) Would you expect Cl2O7 to be more reactive toward H+(aq) or OH− (aq)? Explain. (e) If the oxygen in Cl2O7 is considered to have the -2 oxidation state, what is the oxidation state of the Cl? What is the electron configuration of Cl in this oxidation state?arrow_forwardSodium hydrogen sulfate is used as a cleaning agent and as a flux (a substance that promotes the fusing of metals and prevents the formation of oxides). One of the ways in which sodium hydrogen sulfate is manufactured is by reacting sodium dichromate, Na2Cr2O7, with sulfuric acid. This process also forms water and chromium(VI) oxide, CrO3. Write a balanced equation for this reaction. (You do not need to include states.) How many kilograms of sodium dichromate, Na2Cr2O7, are necessary to produce 130.4 kg of sodium hydrogen sulfate? How many kilograms of chromium(VI) oxide are formed when 130.4 kg of sodium hydrogen sulfate is made? What is the minimum volume of 18.0 M H2SO4 solution necessary to react with 874.0 kg of sodium dichromate? What is the maximum mass of sodium hydrogen sulfate, NaHSO4, that can be formed from the reaction of 874.0 kg of sodium dichromate with 400.0 L of 18.0 M H2SO4?arrow_forward
- Sulfuric acid is made in a three-step process: (1) the combustion of elemental sulfur to produce sulfur dioxide, (2) the continued reaction of sulfur dioxide with oxygen to produce sulfur trioxide, and (3) the reaction of sulfur trioxide with water to make sulfuric acid (H2SO4). Write balanced chemical equations for all three reactions.arrow_forwardA 0.500 g sample of tin foil reacted with oxygen to give 0.635 g of product. (a) What is the empirical formula of the tin oxide? (b) What is the percent by mass of tin and the percent by mass of oxygen in the sample?arrow_forwardA gaseous binary compound has a vapor density that is 1.94 times that of oxygen at the same temperature and pressure. When 1.39 g of the gas is burned in an excess of oxygen, 1.21 g water is formed, removing all the hydrogen originally present.(a) Estimate the molecular mass of the gaseous compound.(b) How many hydrogen atoms are there in a molecule ofthe compound?(c) What is the maximum possible value of the atomicmass of the second element in the compound?(d) Are other values possible for the atomic mass of thesecond element? Use a table of atomic masses to identify the element that best fits the data.(e) What is the molecular formula of the compound?arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning