Concept explainers
(a)
Interpretation: The Lewis structure that contributes most to the bonding in
Concept introduction: The Lewis structures are diagrams that give information about the bonding electron pairs and the lone pairs of electrons in a molecule. Similar to electron dot structure in Lewis diagram the lone pair electrons are represented as dots and they also contain lines which represent bonding electron pairs in a bond.
To determine: If the given Lewis structure contributes to the bonding in
(a)

Answer to Problem 8.109QP
Solution
The given Lewis structure does not contribute most to the bonding in
Explanation of Solution
Explanation
The given Lewis structure is,
Figure 1
The charge present on each atom is known as formal charge which is calculated by using the formula,
For oxygen
The number of valence electrons in oxygen atom is six, the lone pair electrons are two and the bonding electrons are six.
Substitute the value of valence electrons, lone pair of electrons and bond pair of electrons in the above formula to calculate the formal charge.
For carbon atom,
The number of valence electrons in carbon atom is four, the lone pair electrons are five and the bonding electrons are two.
Substitute the value of valence electrons, lone pair of electrons and bond pair of electrons in the above formula to calculate the formal charge.
For nitrogen atom,
The number of valence electrons in nitrogen atom is five, the lone pair electron is zero and the bonding electrons are eight.
Substitute the value of valence electrons, lone pair of electrons and bond pair of electrons in the above formula to calculate the formal charge.
In the given Lewis structure of
(b)
To determine: If the given Lewis structure contributes to the bonding in
(b)

Answer to Problem 8.109QP
Solution
The given Lewis structure does not contribute most to the bonding in
Explanation of Solution
Explanation
The given Lewis structure is,
Figure 2
The formal charge is calculated by using the formula,
For oxygen atom,
The number of valence electrons in oxygen atom is six, the lone pair electrons are four and the bonding electrons are four.
Substitute the value of valence electrons, lone pair of electrons and bond pair of electrons in the above formula to calculate the formal charge.
For carbon atom,
The number of valence electrons in carbon atom is four, the lone pair electrons are three and the bonding electrons are four.
Substitute the value of valence electrons, lone pair of electrons and bond pair of electrons in the above formula to calculate the formal charge.
For nitrogen atom,
The number of valence electrons in nitrogen atom is five, the lone pair electron is zero and the bonding electrons are eight.
Substitute the value of valence electrons, lone pair of electrons and bond pair of electrons in the above formula to calculate the formal charge.
In the given Lewis structure of
Thus, it is known that the nitrogen atom is more electronegative than carbon atom. Hence, the given Lewis structure does not contribute most to the bonding in
(c)
To determine: If the given Lewis structure contributes to the bonding in
(c)

Answer to Problem 8.109QP
Solution
The given Lewis structure does not contribute most to the bonding in
Explanation of Solution
Explanation
The given Lewis structure is,
Figure 3
The formal charge is calculated by using the formula,
For oxygen atom,
The number of valence electrons in oxygen atom is six, the lone pair electrons are five and the bonding electrons are two.
Substitute the value of valence electrons, lone pair of electrons and bond pair of electrons in the above formula to calculate the formal charge.
For carbon atom,
The number of valence electrons in carbon atom is four, the lone pair electrons are two and the bonding electrons are six.
Substitute the value of valence electrons, lone pair of electrons and bond pair of electrons in the above formula to calculate the formal charge.
For nitrogen atom,
The number of valence electrons in nitrogen atom is five, the lone pair electron is zero and the bonding electrons are eight.
Substitute the value of valence electrons, lone pair of electrons and bond pair of electrons in the above formula to calculate the formal charge.
In the given Lewis structure of
Hence, the given Lewis structure does not contribute most to the bonding in
(d)
To determine: If the given Lewis structure contributes to the bonding in
(d)

Answer to Problem 8.109QP
Solution
The given Lewis structure contributes most to the bonding in
Explanation of Solution
Explanation
The given Lewis structure is,
Figure 4
The formal charge is calculated by using the formula,
For oxygen atom,
The number of valence electrons in oxygen atom is six, the lone pair electrons are six and the bonding electrons are two.
Substitute the value of valence electrons, lone pair of electrons and bond pair of electrons in the above formula to calculate the formal charge.
For carbon atom,
The number of valence electrons in carbon atom is four, the lone pair electron is one and the bonding electrons are six.
Substitute the value of valence electrons, lone pair of electrons and bond pair of electrons in the above formula to calculate the formal charge.
For nitrogen atom,
The number of valence electrons in nitrogen atom is five, the lone pair electron is zero and the bonding electrons are eight.
Substitute the value of valence electrons, lone pair of electrons and bond pair of electrons in the above formula to calculate the formal charge.
In the given Lewis structure of
Conclusion
The Lewis structure that contributes most to the bonding in the
Want to see more full solutions like this?
Chapter 8 Solutions
CHEMISTRY W/WRKBK AND SMARTWORK (LL)
- presented by Morallen Lig Intermine the hand product for the given mution by adding atoms, bonds, nonhonding diarion panda скуль Step 3: Comp the draw the product Step 2: Agama workup Compithe 429 ملولةarrow_forwardReaction A 0,0arrow_forwardpresented by Morillon Leaning Predict the organic product for the min кусур HSC Adithane carved arnown to come than that to the condon slchroruis in acid in in aquishri with ноюarrow_forward
- 6.15PM Sun Mar 30 K Draw the major product of this reaction. Include any relevant stereochemistry. Ignore inorganic byproducts. Problem 1 of O H [PhзPCH2CH3]*C|¯ NaH Drawing > Q Atoms, Bonds and Draw or tap a nearrow_forward8:17 PM Sun Mar 30 Draw the major product of this reaction. Ignore inorganic byproducts. HSCH2CH2CH2SH, BF3 Probler Drawing Ato Bonds Clarrow_forwardpresented by Mr L How the coprion. (Il Done in no wraction, dew the starting redential) доarrow_forward
- 8:16 PM Sun Mar 30 K Draw the major product of this reaction. Ignore inorganic byproducts. Proble 1. CH3MgBr 2. H3O+ F Drawingarrow_forwardо но оarrow_forwardName the major organic product of the following action of 4-chloro-4-methyl-1-pentanol in neutral pollution 10+ Now the product. The product has a molecular formula f b. In a singly hain, the starting, material again converts into a secule with the molecular kormula CIO. but with comply Draw the major organic structure inhalationarrow_forward
- Macmillan Learning Alcohols can be oxidized by chromic acid derivatives. One such reagent is pyridinium chlorochromate, (C,H,NH*)(CICTO3), commonly known as PCC. Draw the proposed (neutral) intermediate and the organic product in the oxidation of 1-butanol by PCC when carried out in an anhydrous solvent such as CH₂C₁₂. PCC Intermediate OH CH2Cl2 Draw the intermediate. Select Draw Templates More с H Cr о Product Draw the product. Erase Select Draw Templates More H о Erasearrow_forwardIf I have 1-bromopropene, to obtain compound A, I have to add NaOH and another compound. Indicate which compound that would be. A C6H5 CH3arrow_forwardProvide the reagents for the following reactions.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





