
Normal force acting on the billiard ball at point

Answer to Problem 70QAP
Explanation of Solution
Given info:
Billiard ball of,
Radius
Mass
Translational speed of billiard ball at
Point B is at the top of a hill that has a radius of curvature of
Billiard ball rolls without slipping down the track.
Formula used:
Let's name normal force acting on the ball at point
As
Let's name the angular velocity of billiard ball at the top of the track as
Let's name the linear speed of billiard ball at the top of the hill as
Let's name the moment of inertia of billiard ball as
Let's name the vertical distance from potential energy zero level
Conservation of mechanical energy:
Kinetic energy for an object that undergoes both translation and rotation:
Condition for rolling without slipping:
Centrifugal power of billiard ball,
Calculation:
Let's consider the motion of sphere,
Initially the billiard ball is at rest with translational kinetic energy, so
The initial gravitational potential energy is
Final gravitational potential energy is
Conservation of mechanical energy:
Let's consider the kinetic energy
Kinetic energy is part translational and part rotational. We can use
In terms of
Using
Kinetic energy for an object that undergoes both translation and rotation:
Condition for rolling without slipping:
Substitute into kinetic energy equation:
From the general knowledge we know that moment of inertia of a sphere is
So, let's substitute the
Since
Let's consider the billiard ball at the top of the hill,
Centrifugal power of billiard ball,
Substituting
Let's substitute the values,
Conclusion:
Thus, normal force acting on the billiard ball at point
Want to see more full solutions like this?
Chapter 8 Solutions
FlipIt for College Physics (Algebra Version - Six Months Access)
- (a) For a spherical capacitor with inner radius a and outer radius b, we have the following for the capacitance. ab C = k₂(b- a) 0.0695 m 0.145 m (8.99 × 10º N · m²/c²)( [0.145 m- 0.0695 m × 10-11 F = PF IIarrow_forwardA pendulum bob A (0.5 kg) is given an initialspeed of vA = 4 m/s when the chord ishorizontal. It then hits a stationary block B (1kg) which then slides to a maximum distanced before it stops. Determine the value of d.The coefficient of static friction between theblock and the plane is μk = 0.2. The coefficientof restitution between A and B is e = 0.8.Ans: d=1.0034 marrow_forwardFigure 29-43 Problem 12. ••13 In Fig. 29-44, point P₁ is at distance R = 13.1 cm on the perpendicular bisector of a straight wire of length L = 18.0 cm carrying current i = 58.2 mA. (Note that the wire is not long.) What is the magnitude of the magnetic field at P₁ due to i? P2° R R Larrow_forward
- Checkpoint 1 The figure shows the current i in a single-loop circuit with a battery B and a resistance R (and wires of neg- ligible resistance). (a) Should the emf arrow at B be drawn pointing leftward or rightward? At points a, B C R b, and c, rank (b) the magnitude of the current, (c) the electric potential, and (d) the electric potential energy of the charge carriers, greatest first.arrow_forwardPls help ASAParrow_forwardPls help asaparrow_forward
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





