FlipIt for College Physics (Algebra Version - Six Months Access)
FlipIt for College Physics (Algebra Version - Six Months Access)
17th Edition
ISBN: 9781319032432
Author: Todd Ruskell
Publisher: W.H. Freeman & Co
bartleby

Videos

Question
Book Icon
Chapter 8, Problem 67QAP
To determine

Cylinder's speed at the bottom of the ramp.

Expert Solution & Answer
Check Mark

Answer to Problem 67QAP

  vc=3.36ms1

Explanation of Solution

Given info:

Uniform solid cylinder of,

  Radius =r0=5cm

  Mass =θ=25

  =m0=3.00kg

An inclined plane,

  Length =l0=2.00m

  Angle which tilted with horizontal plane =θ=25

Cylinder rolls without slipping down the ramp.

Formula used:

Let's name the vertical height of the plane as h.

Let's name the angular velocity of cylinder at the bottom of the ramp as ω.

Let's name the linear speed of cylinder at the bottom of the ramp as vc

Let's name the moment of inertia of cylinder as Ic.

  g=10ms2.

Conservation of mechanical energy:

  Ki+Ui=Kf+Uf

Kinetic energy for an object that undergoes both translation and rotation:

  K=12Mv2c+12Icω2...(1)

Condition for rolling without slipping:

  vc=roω...(2)

Calculation:

Let's consider the motion of cylinder,

Initially the cylinder is at rest with zero kinetic energy, so Ki=0.

The initial gravitational potential energy is Ui=mogyi

Final gravitational potential energy is Uf=mogyf

Conservation of mechanical energy:

  Ki+Ui=Kf+Uf

  (0)+mogyi=Kf+mogyf

  Kf=mog(yiyf)

But, according to the data given,

  (yiyf)=h

So,

  Kf=mogh...(A)

Let's consider the kinetic energy (Kf) of cylinder at the bottom of the ramp,

Kinetic energy is part translational and part rotational. We can use (2) equation to write ω

In terms of vc.

Using (1) expression,

Kinetic energy for an object that undergoes both translation and rotation:

  K=12Mv2c+12Icω2...(1)

  Kf=12mov2c+12Icω2

Condition for rolling without slipping:

  vc=roω...(2)

  ω=vcro

Substitute into kinetic energy equation:

  Kf=12mov2c+12Icω2

  Kf=12mov2c+12Icω2

  Kf=12mov2c+12Ic( v c r o )2

  Kf=12(mo+Icr02)vc2

From the general knowledge we know that moment of inertia of a cylinder is Ic=12m0ro2.

So, let's substitute the Ic value in to the equation,

  Kf=12(mo+Icr02)vc2

  Kf=12(mo+( 1 2 m 0 r o 2 )ro2)vc2

  Kf=12(mo+12m0)vc2

  Kf=12(32m0)vc2

  Kf=34movc2...(B)

Since (A),(B) equations are equal,

  (A)=(B)

  mogh=34movc2

  gh=34vc2

  vc2=4gh3

  vc=4gh3

Let's substitute the values,

  vc=4*10ms 2*2msin 253

  vc=11.27

  vc3.36ms1

  vc=3.36ms1

Conclusion:

Thus, cylinder's speed at the bottom of the ramp is 3.36ms1.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Fresnel lens: You would like to design a 25 mm diameter blazed Fresnel zone plate with a first-order power of +1.5 diopters. What is the lithography requirement (resolution required) for making this lens that is designed for 550 nm? Express your answer in units of μm to one decimal point. Fresnel lens: What would the power of the first diffracted order of this lens be at wavelength of 400 nm? Express your answer in diopters to one decimal point. Eye: A person with myopic eyes has a far point of 15 cm. What power contact lenses does she need to correct her version to a standard far point at infinity? Give your answer in diopter to one decimal point.
Paraxial design of a field flattener. Imagine your optical system has Petzal curvature of the field with radius p. In Module 1 of Course 1, a homework problem asked you to derive the paraxial focus shift along the axis when a slab of glass was inserted in a converging cone of rays. Find or re-derive that result, then use it to calculate the paraxial radius of curvature of a field flattener of refractive index n that will correct the observed Petzval. Assume that the side of the flattener facing the image plane is plano. What is the required radius of the plano-convex field flattener? (p written as rho )
3.37(a) Five free electrons exist in a three-dimensional infinite potential well with all three widths equal to \( a = 12 \, \text{Å} \). Determine the Fermi energy level at \( T = 0 \, \text{K} \).  (b) Repeat part (a) for 13 electrons.   Book: Semiconductor Physics and Devices 4th ed, NeamanChapter-3Please expert answer only. don't give gpt-generated answers, & please clear the concept of quantum states for determining nx, ny, nz to determine E, as I don't have much idea about that topic.

Chapter 8 Solutions

FlipIt for College Physics (Algebra Version - Six Months Access)

Ch. 8 - Prob. 11QAPCh. 8 - Prob. 12QAPCh. 8 - Prob. 13QAPCh. 8 - Prob. 14QAPCh. 8 - Prob. 15QAPCh. 8 - Prob. 16QAPCh. 8 - Prob. 17QAPCh. 8 - Prob. 18QAPCh. 8 - Prob. 19QAPCh. 8 - Prob. 20QAPCh. 8 - Prob. 21QAPCh. 8 - Prob. 22QAPCh. 8 - Prob. 23QAPCh. 8 - Prob. 24QAPCh. 8 - Prob. 25QAPCh. 8 - Prob. 26QAPCh. 8 - Prob. 27QAPCh. 8 - Prob. 28QAPCh. 8 - Prob. 29QAPCh. 8 - Prob. 30QAPCh. 8 - Prob. 31QAPCh. 8 - Prob. 32QAPCh. 8 - Prob. 33QAPCh. 8 - Prob. 34QAPCh. 8 - Prob. 35QAPCh. 8 - Prob. 36QAPCh. 8 - Prob. 37QAPCh. 8 - Prob. 38QAPCh. 8 - Prob. 39QAPCh. 8 - Prob. 40QAPCh. 8 - Prob. 41QAPCh. 8 - Prob. 42QAPCh. 8 - Prob. 43QAPCh. 8 - Prob. 44QAPCh. 8 - Prob. 45QAPCh. 8 - Prob. 46QAPCh. 8 - Prob. 47QAPCh. 8 - Prob. 48QAPCh. 8 - Prob. 49QAPCh. 8 - Prob. 50QAPCh. 8 - Prob. 51QAPCh. 8 - Prob. 52QAPCh. 8 - Prob. 53QAPCh. 8 - Prob. 54QAPCh. 8 - Prob. 55QAPCh. 8 - Prob. 56QAPCh. 8 - Prob. 57QAPCh. 8 - Prob. 58QAPCh. 8 - Prob. 59QAPCh. 8 - Prob. 60QAPCh. 8 - Prob. 61QAPCh. 8 - Prob. 62QAPCh. 8 - Prob. 63QAPCh. 8 - Prob. 64QAPCh. 8 - Prob. 65QAPCh. 8 - Prob. 66QAPCh. 8 - Prob. 67QAPCh. 8 - Prob. 68QAPCh. 8 - Prob. 69QAPCh. 8 - Prob. 70QAPCh. 8 - Prob. 71QAPCh. 8 - Prob. 72QAPCh. 8 - Prob. 73QAPCh. 8 - Prob. 74QAPCh. 8 - Prob. 75QAPCh. 8 - Prob. 76QAPCh. 8 - Prob. 77QAPCh. 8 - Prob. 78QAPCh. 8 - Prob. 79QAPCh. 8 - Prob. 80QAPCh. 8 - Prob. 81QAPCh. 8 - Prob. 82QAPCh. 8 - Prob. 83QAPCh. 8 - Prob. 84QAPCh. 8 - Prob. 85QAPCh. 8 - Prob. 86QAPCh. 8 - Prob. 87QAPCh. 8 - Prob. 88QAPCh. 8 - Prob. 89QAPCh. 8 - Prob. 90QAPCh. 8 - Prob. 91QAPCh. 8 - Prob. 92QAPCh. 8 - Prob. 93QAPCh. 8 - Prob. 94QAPCh. 8 - Prob. 95QAPCh. 8 - Prob. 96QAPCh. 8 - Prob. 97QAPCh. 8 - Prob. 98QAPCh. 8 - Prob. 99QAPCh. 8 - Prob. 100QAPCh. 8 - Prob. 101QAPCh. 8 - Prob. 102QAPCh. 8 - Prob. 103QAPCh. 8 - Prob. 104QAPCh. 8 - Prob. 105QAPCh. 8 - Prob. 106QAPCh. 8 - Prob. 107QAPCh. 8 - Prob. 108QAPCh. 8 - Prob. 109QAPCh. 8 - Prob. 110QAPCh. 8 - Prob. 111QAPCh. 8 - Prob. 112QAPCh. 8 - Prob. 113QAPCh. 8 - Prob. 114QAPCh. 8 - Prob. 115QAPCh. 8 - Prob. 116QAPCh. 8 - Prob. 117QAPCh. 8 - Prob. 118QAPCh. 8 - Prob. 119QAPCh. 8 - Prob. 120QAPCh. 8 - Prob. 121QAPCh. 8 - Prob. 122QAPCh. 8 - Prob. 123QAPCh. 8 - Prob. 124QAPCh. 8 - Prob. 125QAPCh. 8 - Prob. 126QAPCh. 8 - Prob. 127QAP
Knowledge Booster
Background pattern image
Algebra
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Rotational Kinetic Energy; Author: AK LECTURES;https://www.youtube.com/watch?v=s5P3DGdyimI;License: Standard YouTube License, CC-BY