
Minimum height that the marble must start from to make it around the loop.

Answer to Problem 69QAP
Explanation of Solution
Given info:
Spherical marble of,
Radius
Mass
Loop-the-loop track,
Radius
Spherical marble rolls without slipping down the track.
Marble starts from rest and just barely clears the loop to emerge on the other side of the track.
Formula used:
Let's name the minimum height that the marble must start from to make it around the loop
As
Let's name the
Let's name the linear speed of spherical marble at the top of the track as
Let's name the moment of inertia of spherical marble as
Conservation of mechanical energy:
Kinetic energy for an object that undergoes both translation and rotation:
Condition for rolling without slipping:
Equilibrium of vertical forces of spherical marble at the top of the track,
Centrifugal power
Calculation:
Let's consider the motion of sphere,
Initially the spherical marble is at rest with zero kinetic energy, so
The initial gravitational potential energy is
Final gravitational potential energy is
Conservation of mechanical energy:
Let's consider the kinetic energy
Kinetic energy is part translational and part rotational. We can use
In terms of
Using
Kinetic energy for an object that undergoes both translation and rotation:
Condition for rolling without slipping:
Substitute into kinetic energy equation:
From the general knowledge we know that moment of inertia of a sphere is
So, let's substitute the
Since
Marble starts from rest and just barely clears the loop to emerge on the other side of the track.
So,
Equilibrium of vertical forces of spherical marble at the top of the track,
Centrifugal power
Substituting
Let's substitute the
Conclusion:
Thus, minimum height that the marble must start from to make it around the loop is
Want to see more full solutions like this?
Chapter 8 Solutions
FlipIt for College Physics (Algebra Version - Six Months Access)
- 23. What is the velocity of a beam of electrons that goes undeflected when passing through perpendicular electric and magnetic fields of magnitude 8.8 X 103 V/m and 7.5 X 10-3 T. respectively? What is the radius of the electron orbit if the electric field is turned off?arrow_forward10. A light bulb emits 25.00 W of power as visible light. What are the average electric and magnetic fields from the light at a distance of 2.0 m?arrow_forward9. Some 1800 years ago Roman soldiers effectively used slings as deadly weapons. The length of these slings averaged about 81 cm and the lead shot that they used weighed about 30 grams. If in the wind up to a release, the shot rotated around the Roman slinger with a period of .15 seconds. Find the maximum acceleration of the shot before being released in m/s^2 and report it to two significant figures.arrow_forward
- In the movie Fast X, a 10100 kg round bomb is set rolling in Rome. The bomb gets up to 17.6 m/s. To try to stop the bomb, the protagonist Dom swings the counterweight of a crane, which has a mass of 354000 kg into the bomb at 3.61 m/s in the opposite direction. Directly after the collision the crane counterweight continues in the same direction it was going at 2.13 m/s. What is the velocity (magnitude and direction) of the bomb right after the collision?arrow_forwardDon't use aiarrow_forwardMake sure to draw a sketch with scale pleasearrow_forward
- Make sure to draw a sketch with scalearrow_forwardUltimate Byleth and Little Mac fight. Little Mac, who is a boxer, dashes forward at 26.6 m/s, fist first. Byleth moves in the opposite direction at 3.79 m/s, where they collide with Little Mac’s fist. After the punch Byleth flies backwards at 11.1 m/s. How fast, and in what direction, is Little Mac now moving? Little Mac has a mass of 48.5 kg and Byleth has a mass of 72.0 kg.arrow_forwardMake sure to draw a sketch with scale as wellarrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





