OWLV2 FOR MOORE/STANITSKI'S CHEMISTRY:
OWLV2 FOR MOORE/STANITSKI'S CHEMISTRY:
5th Edition
ISBN: 9781285460369
Author: STANITSKI
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 8, Problem 69QRT
Interpretation Introduction

Interpretation:

Volume occupied by 1 mol of each of the noble gas has to be determined and the trend has to be commented. Volume of one mole of the noble gas as an Ideal gas has to be calculated. The gas that shows the largest deviations from the ideality at room temperature has to be identified and reason for this has to be explained.

Expert Solution & Answer
Check Mark

Answer to Problem 69QRT

Volume of He is 32.0 mL.

Volume of Ne is 16.8 mL.

Volume of Ar is 28.5 mL.

Volume of Kr is 34.6 mL.

Volume of Xe is 44.5 mL.

The trend observed from the volume it that the liquids with larger atoms will occupy more volume in its liquid state.

Volume of 1 mol of  ideal gas at STP is 22.4 L.

The gas showing the largest deviation from this value is Xe. This is because of its larger size. Also the boiling point of Xe is near to the room temperature.

Explanation of Solution

  • Calculate the volume of He:

  mass = n×Molar mass(1 mol)(4.003 g/mol) = 4.003 gdensity = massVolume= 4.003 g0.125 g/mL = 32.0 mL He

Volume of He is 32.0 mL.

  • Calculate the volume of Ne:

  mass = n×Molar mass(1 mol)(20.18 g/mol) = 20.18 gdensity = massVolume= 20.18 g1.20 g/mL = 16.8 mL Ne

Volume of Ne is 16.8 mL.

  • Calculate the volume of Ar:

  mass = n×Molar mass(1 mol)(39.95 g/mol) = 39.95 gdensity = massVolume= 39.95 g1.40 g/mL = 28.5 mL Ar

Volume of Ar is 28.5 mL.

  • Calculate the volume of Kr:

  mass = n×Molar mass(1 mol)(83.80 g/mol) = 83.80 gdensity = massVolume= 83.80 g2.42 g/mL = 34.6 mL Kr

Volume of Kr is 34.6 mL.

  • Calculate the volume of Xe:

  mass = n×Molar mass(1 mol)(131.29 g/mol) = 131.29 gdensity = massVolume= 131.29 g2.95 g/mL = 44.5 mL Xe

Volume of Xe is 44.5 mL.

Observing the volume occupied by 1 mol of each of the noble gas, it is clear that the liquids with larger atoms will occupy more volume in its liquid state.

  • Volume of one mole of the noble gas as an Ideal gas can be calculated using Ideal gas equation as shown below,

  PV = nRT(1 atm)V= (1.0 mol)(0.0821 L atm mol1K1)(273.15 K)V= (1.0 mol)(0.0821 L atm mol1K1)(273.15 K)(1.0 atm)=22.4 L

Volume of 1 mol of ideal gas at STP is 22.4 L.

The gas showing the largest deviation from this value is Xe. This is because of its larger size. Also the boiling point of Xe is near to the room temperature.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
10. (5pts) Provide the complete arrow pushing mechanism for the chemical transformation → depicted below Use proper curved arrow notation that explicitly illustrates all bonds being broken, and all bonds formed in the transformation. Also, be sure to include all lone pairs and formal charges on all atoms involved in the flow of electrons. CH3O II HA H CH3O-H H ①
Do the Lone Pairs get added bc its valence e's are a total of 6 for oxygen and that completes it or due to other reasons. How do we know the particular indication of such.
NGLISH b) Identify the bonds present in the molecule drawn (s) above. (break) State the function of the following equipments found in laboratory. Omka) a) Gas mask b) Fire extinguisher c) Safety glasses 4. 60cm³ of oxygen gas diffused through a porous hole in 50 seconds. How long w 80cm³ of sulphur(IV) oxide to diffuse through the same hole under the same conditions (S-32.0.0-16.0) (3 m 5. In an experiment, a piece of magnesium ribbon was cleaned with steel w clean magnesium ribbon was placed in a crucible and completely burnt in oxy cooling the product weighed 4.0g a) Explain why it is necessary to clean magnesium ribbon. Masterclass Holiday assignmen PB 2

Chapter 8 Solutions

OWLV2 FOR MOORE/STANITSKI'S CHEMISTRY:

Ch. 8.4 - Prob. 8.5PSPCh. 8.4 - Prob. 8.8CECh. 8.4 - Prob. 8.9CECh. 8.4 - Prob. 8.6PSPCh. 8.4 - Prob. 8.10CECh. 8.5 - Prob. 8.7PSPCh. 8.5 - Prob. 8.8PSPCh. 8.5 - Prob. 8.11ECh. 8.6 - Prob. 8.9PSPCh. 8.6 - Prob. 8.12CECh. 8.6 - Prob. 8.13ECh. 8.6 - Prob. 8.10PSPCh. 8.6 - Prob. 8.11PSPCh. 8.7 - Prob. 8.12PSPCh. 8.7 - Prob. 8.14ECh. 8.7 - Prob. 8.16CECh. 8.7 - Prob. 8.17ECh. 8.8 - Prob. 8.13PSPCh. 8.8 - Prob. 8.18ECh. 8.8 - Look up the van der Waals constants, b, for H2,...Ch. 8.11 - List as many natural sources of CO2 as you can,...Ch. 8.11 - Prob. 8.21ECh. 8.11 - Prob. 8.22CECh. 8.11 - Prob. 8.23CECh. 8.11 - Prob. 8.24CECh. 8.12 - Make these conversions for atmospheric...Ch. 8.12 - Prob. 8.25ECh. 8 - In a typical automobile engine, a gasoline...Ch. 8 - Prob. 1QRTCh. 8 - Prob. 2QRTCh. 8 - Prob. 3QRTCh. 8 - Prob. 4QRTCh. 8 - Prob. 5QRTCh. 8 - Prob. 6QRTCh. 8 - Prob. 7QRTCh. 8 - Prob. 8QRTCh. 8 - Prob. 9QRTCh. 8 - Prob. 10QRTCh. 8 - Prob. 11QRTCh. 8 - Prob. 12QRTCh. 8 - Prob. 13QRTCh. 8 - Prob. 14QRTCh. 8 - Prob. 15QRTCh. 8 - Prob. 16QRTCh. 8 - Prob. 17QRTCh. 8 - Prob. 18QRTCh. 8 - Some butane, the fuel used in backyard grills, is...Ch. 8 - Prob. 20QRTCh. 8 - Suppose you have a sample of CO2 in a gas-tight...Ch. 8 - Prob. 22QRTCh. 8 - Prob. 23QRTCh. 8 - Prob. 24QRTCh. 8 - A sample of gas occupies 754 mL at 22 C and a...Ch. 8 - Prob. 26QRTCh. 8 - Prob. 27QRTCh. 8 - Prob. 28QRTCh. 8 - Prob. 29QRTCh. 8 - Prob. 30QRTCh. 8 - Prob. 31QRTCh. 8 - Prob. 32QRTCh. 8 - Calculate the molar mass of a gas that has a...Ch. 8 - Prob. 34QRTCh. 8 - Prob. 35QRTCh. 8 - Prob. 36QRTCh. 8 - Prob. 37QRTCh. 8 - Prob. 38QRTCh. 8 - Prob. 39QRTCh. 8 - Prob. 40QRTCh. 8 - Prob. 41QRTCh. 8 - Prob. 42QRTCh. 8 - Prob. 43QRTCh. 8 - Prob. 44QRTCh. 8 - Prob. 45QRTCh. 8 - Prob. 46QRTCh. 8 - Prob. 47QRTCh. 8 - Prob. 48QRTCh. 8 - The build-up of excess carbon dioxide in the air...Ch. 8 - Prob. 50QRTCh. 8 - Prob. 51QRTCh. 8 - Prob. 52QRTCh. 8 - Prob. 53QRTCh. 8 - Prob. 54QRTCh. 8 - Prob. 55QRTCh. 8 - Benzene has acute health effects. For example, it...Ch. 8 - The mean fraction by mass of water vapor and cloud...Ch. 8 - Acetylene can be made by reacting calcium carbide...Ch. 8 - Prob. 59QRTCh. 8 - You are given two flasks of equal volume. Flask A...Ch. 8 - Prob. 61QRTCh. 8 - Prob. 62QRTCh. 8 - Prob. 63QRTCh. 8 - Prob. 64QRTCh. 8 - Prob. 65QRTCh. 8 - Prob. 66QRTCh. 8 - Prob. 67QRTCh. 8 - Prob. 68QRTCh. 8 - Prob. 69QRTCh. 8 - Prob. 70QRTCh. 8 - Prob. 71QRTCh. 8 - Prob. 72QRTCh. 8 - Prob. 73QRTCh. 8 - Prob. 74QRTCh. 8 - Prob. 75QRTCh. 8 - Prob. 76QRTCh. 8 - Prob. 77QRTCh. 8 - Prob. 78QRTCh. 8 - Prob. 79QRTCh. 8 - Prob. 80QRTCh. 8 - Prob. 81QRTCh. 8 - Prob. 82QRTCh. 8 - Prob. 83QRTCh. 8 - Prob. 84QRTCh. 8 - Prob. 85QRTCh. 8 - Name a favorable effect of the global increase of...Ch. 8 - Prob. 87QRTCh. 8 - Assume that limestone, CaCO3, is used to remove...Ch. 8 - Prob. 89QRTCh. 8 - Prob. 90QRTCh. 8 - Prob. 91QRTCh. 8 - Prob. 92QRTCh. 8 - Prob. 93QRTCh. 8 - Prob. 94QRTCh. 8 - Prob. 95QRTCh. 8 - Prob. 96QRTCh. 8 - Prob. 97QRTCh. 8 - Prob. 98QRTCh. 8 - Prob. 99QRTCh. 8 - Prob. 100QRTCh. 8 - Prob. 101QRTCh. 8 - Prob. 102QRTCh. 8 - Prob. 103QRTCh. 8 - Prob. 104QRTCh. 8 - Prob. 105QRTCh. 8 - Prob. 106QRTCh. 8 - Prob. 107QRTCh. 8 - Prob. 108QRTCh. 8 - Prob. 109QRTCh. 8 - Consider these four gas samples, all at the same...Ch. 8 - Prob. 111QRTCh. 8 - Prob. 112QRTCh. 8 - Prob. 113QRTCh. 8 - Prob. 114QRTCh. 8 - Prob. 115QRTCh. 8 - Prob. 116QRTCh. 8 - Prob. 117QRTCh. 8 - Prob. 118QRTCh. 8 - Prob. 119QRTCh. 8 - Prob. 120QRTCh. 8 - Prob. 121QRTCh. 8 - Prob. 122QRTCh. 8 - Prob. 123QRTCh. 8 - Prob. 124QRTCh. 8 - Prob. 125QRTCh. 8 - Prob. 126QRTCh. 8 - Prob. 127QRTCh. 8 - Prob. 128QRTCh. 8 - Prob. 129QRTCh. 8 - Prob. 8.ACPCh. 8 - Prob. 8.BCP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Text book image
World of Chemistry, 3rd edition
Chemistry
ISBN:9781133109655
Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCoste
Publisher:Brooks / Cole / Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning