
(a)
Interpretation:
The carbocation intermediate formed during E1 reaction for each of the given substrates is needed to be drawn and in that the primary, secondary and tertiary carbocation should be identified with explaining the reason for one of the substrate’s inactivity in E1 reaction.
Concept introduction:
E1 reaction is a unimolecular elimination reaction in which carbocation is formed as an intermediate from substrate by the removal of leaving group and it has stepwise mechanism.
The first step of E1 reaction involves the removal of leaving group (halo-group) and the formation of carbocation. The
The stability of carbocation is in the increasing order of
Primary
To draw: the carbocation intermediate formed during E1 reaction for the given substrates and identify the nature of carbocation and explain the possibility of undergoing E1 reaction.
(b)
Interpretation:
The carbocation intermediate formed during E1 reaction for each of the given substrates is needed to be drawn and in that the primary, secondary and tertiary carbocation should be identified with explaining the reason for one of the substrate’s inactivity in E1 reaction.
Concept introduction:
E1 reaction is a unimolecular elimination reaction in which carbocation is formed as an intermediate from substrate by the removal of leaving group and it has stepwise mechanism.
The first step of E1 reaction involves the removal of leaving group (halo-group) and the formation of carbocation. The rate of E1 reaction is totally depends upon the nature of the substrate on the basis of stability of the carbocation formed from the alkyl halide.
The stability of carbocation is in the increasing order of
Primary alkyl halides are generally does not undergo E1 reaction because of the very less stabled primary carbocation with high activation energy.
To draw: the carbocation intermediate formed during E1 reaction for the given substrates and identify the nature of carbocation and explain the possibility of undergoing E1 reaction.
(c)
Interpretation:
The carbocation intermediate formed during E1 reaction for each of the given substrates is needed to be drawn and in that the primary, secondary and tertiary carbocation should be identified with explaining the reason for one of the substrate’s inactivity in E1 reaction.
Concept introduction:
E1 reaction is a unimolecular elimination reaction in which carbocation is formed as an intermediate from substrate by the removal of leaving group and it has stepwise mechanism.
The first step of E1 reaction involves the removal of leaving group (halo-group) and the formation of carbocation. The rate of E1 reaction is totally depends upon the nature of the substrate on the basis of stability of the carbocation formed from the alkyl halide.
The stability of carbocation is in the increasing order of
Primary alkyl halides are generally does not undergo E1 reaction because of the very less stabled primary carbocation with high activation energy.
To draw: the carbocation intermediate formed during E1 reaction for the given substrates and identify the nature of carbocation and explain the possibility of undergoing E1 reaction.
(d)
Interpretation:
The carbocation intermediate formed during E1 reaction for each of the given substrates is needed to be drawn and in that the primary, secondary and tertiary carbocation should be identified with explaining the reason for one of the substrate’s inactivity in E1 reaction.
Concept introduction:
E1 reaction is a unimolecular elimination reaction in which carbocation is formed as an intermediate from substrate by the removal of leaving group and it has stepwise mechanism.
The first step of E1 reaction involves the removal of leaving group (halo-group) and the formation of carbocation. The rate of E1 reaction is totally depends upon the nature of the substrate on the basis of stability of the carbocation formed from the alkyl halide.
The stability of carbocation is in the increasing order of
Primary alkyl halides are generally does not undergo E1 reaction because of the very less stabled primary carbocation with high activation energy.
To draw: the carbocation intermediate formed during E1 reaction for the given substrates and identify the nature of carbocation and explain the possibility of undergoing E1 reaction.

Want to see the full answer?
Check out a sample textbook solution
Chapter 8 Solutions
Student Study Guide and Solutions Manual T/A Organic Chemistry
- For each of the substituted benzene molecules below, determine the inductive and resonance effects the substituent will have on the benzene ring, as well as the overall electron-density of the ring compared to unsubstituted benzene. Molecule Inductive Effects O donating O withdrawing O no inductive effects Resonance Effects Overall Electron-Density ○ donating ○ withdrawing O no resonance effects O electron-rich O electron-deficient O similar to benzene Cl O donating O withdrawing ○ donating ○ withdrawing O no inductive effects O no resonance effects O Explanation Check O electron-rich O electron-deficient similar to benzene X © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessarrow_forwardIdentifying electron-donating and For each of the substituted benzene molecules below, determine the inductive and resonance effects the substituent will have on the benzene ring, as well as the overall electron-density of the ring compared to unsubstituted benzene. Molecule Inductive Effects NH2 ○ donating NO2 Explanation Check withdrawing no inductive effects Resonance Effects Overall Electron-Density ○ donating O withdrawing O no resonance effects O donating O withdrawing O donating withdrawing O no inductive effects Ono resonance effects O electron-rich electron-deficient O similar to benzene O electron-rich O electron-deficient O similar to benzene olo 18 Ar 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessibilityarrow_forwardRank each of the following substituted benzene molecules in order of which will react fastest (1) to slowest (4) by electrophilic aromatic substitution. Explanation Check Х (Choose one) OH (Choose one) OCH3 (Choose one) OH (Choose one) © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Centerarrow_forward
- Assign R or S to all the chiral centers in each compound drawn below porat bg 9 Br Brarrow_forwarddescrive the energy levels of an atom and howan electron moces between themarrow_forwardRank each set of substituents using the Cahn-Ingold-Perlog sequence rules (priority) by numbering the highest priority substituent 1.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





