Physics
7th Edition
ISBN: 9780321929013
Author: Douglas C. Giancoli
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8, Problem 67P
A person of mass 75 kg stands at the center of a rotating merry-go-round platform of radius 3.0 m and moment of inertia 820 kg .m2. The platform rotates without friction with
Expert Solution & Answer
Learn your wayIncludes step-by-step video
schedule08:40
Chapter 8 Solutions
Physics
Ch. 8 - A solid ball and a solid cylinder roll down a...Ch. 8 - A bicycle odometer (which counts revolutions and...Ch. 8 - Prob. 2QCh. 8 - Prob. 3QCh. 8 - Why is it more difficult to do a sit-up with your...Ch. 8 - If the net force on a system is zero, is the net...Ch. 8 - Mammals that depend on being able to run fast have...Ch. 8 - This book has three symmetry axes through its...Ch. 8 - Can the mass of a rigid object be considered...Ch. 8 - The moment of inertia of a rotating solid disk...
Ch. 8 - Two inclines have the same height but make...Ch. 8 - Two spheres look identical and have the same mass....Ch. 8 - A sphere and a cylinder have the same radius and...Ch. 8 - Prob. 13QCh. 8 - Prob. 14QCh. 8 - 15. Can the diver of Fig. 8-28 do a somersault...Ch. 8 - When a motorcyclist leaves the ground on a jump...Ch. 8 - Prob. 17QCh. 8 - 18. The angular velocity of a wheel rotating on a...Ch. 8 - 19. In what direction is the Earth's angular...Ch. 8 - 20. ‘On the basis of the law of conservation of...Ch. 8 - Bonnie sits on the outer rim of a merry-go-round,...Ch. 8 - Prob. 2MCQCh. 8 - Prob. 3MCQCh. 8 - Prob. 4MCQCh. 8 - Prob. 5MCQCh. 8 - Prob. 6MCQCh. 8 - Prob. 7MCQCh. 8 - Prob. 8MCQCh. 8 - Prob. 9MCQCh. 8 - Prob. 10MCQCh. 8 - Prob. 11MCQCh. 8 - Prob. 12MCQCh. 8 - Suppose you are sitting on a rotating stool...Ch. 8 - Express the following angles in radians: (a)...Ch. 8 - The Sun subtends an angle of about 0.5° to us on...Ch. 8 - A laser beam is directed at the Moon, 380,000 km...Ch. 8 - The blades in a blender rotate at a rate of 6500...Ch. 8 - 5. (II) The platter of the hard drive of a...Ch. 8 - Prob. 6PCh. 8 - (a) A grinding wheel 0.35 m in diameter rotates at...Ch. 8 - Prob. 8PCh. 8 - Calculate the angular velocity (a) of a clock's...Ch. 8 - Prob. 10PCh. 8 - What is the linear speed, due to the Earth's...Ch. 8 - Prob. 12PCh. 8 - How fast (in rpm) must a centrifuge rotate ifa...Ch. 8 - Prob. 14PCh. 8 - Prob. 15PCh. 8 - Prob. 16PCh. 8 - An automobile engine slows down from 3500 rpm to...Ch. 8 - 18. (I) A centrifuge accelerates uniformly from...Ch. 8 - Prob. 19PCh. 8 - Prob. 20PCh. 8 - A wheel 31 cm in diameter accelerates uniformly...Ch. 8 - Prob. 22PCh. 8 - Prob. 23PCh. 8 - A 52-kg person riding a bike puts all her weight...Ch. 8 - Calculate the net torque about the axle of the...Ch. 8 - A person exerts a horizontal force of 42 N on the...Ch. 8 - Prob. 27PCh. 8 - The bolts on the cylinder head of an engine...Ch. 8 - Determine the net torque on the 2.0-m-long uniform...Ch. 8 - Determine the moment of inertia of a 10.8-kg...Ch. 8 - 31. (I) Estimate the moment of inertia of a...Ch. 8 - A merry-go-round accelerates from rest to 0.68...Ch. 8 - Prob. 33PCh. 8 - (II) A grinding wheel is a uniform cylinder with a...Ch. 8 - Prob. 35PCh. 8 - Prob. 36PCh. 8 - Prob. 37PCh. 8 - Prob. 38PCh. 8 - Prob. 39PCh. 8 - Prob. 40PCh. 8 - Prob. 41PCh. 8 - Prob. 42PCh. 8 - Prob. 43PCh. 8 - A centrifuge rotor rotating at 9200 rpm is shut...Ch. 8 - 45. (II) To get a flat, uniform cylindrical...Ch. 8 - 46. (Ill) Two blocks are connected by a light...Ch. 8 - 47 (III) An Atwood machine consists of two masses,...Ch. 8 - A hammer thrower accelerates the hammer (mass...Ch. 8 - 49. (I) An automobile engine develops a torque of...Ch. 8 - A centrifuge rotor has a moment of inertia of 325...Ch. 8 - Prob. 51PCh. 8 - Prob. 52PCh. 8 - Prob. 53PCh. 8 - Prob. 54PCh. 8 - Prob. 55PCh. 8 - Prob. 56PCh. 8 - Prob. 57PCh. 8 - Prob. 58PCh. 8 - Prob. 59PCh. 8 - What is the angular momentum of a 0.270-kg ball...Ch. 8 - (a) What is the angular momentum of a 2.8-kg...Ch. 8 - Prob. 62PCh. 8 - Prob. 63PCh. 8 - Prob. 64PCh. 8 - Prob. 65PCh. 8 - Prob. 66PCh. 8 - A person of mass 75 kg stands at the center of a...Ch. 8 - Prob. 68PCh. 8 - Prob. 69PCh. 8 - Prob. 70PCh. 8 - Prob. 71PCh. 8 - Prob. 72PCh. 8 - Prob. 73PCh. 8 - Prob. 74PCh. 8 - Prob. 75GPCh. 8 - Prob. 76GPCh. 8 - Prob. 77GPCh. 8 - Prob. 78GPCh. 8 - Prob. 79GPCh. 8 - Prob. 80GPCh. 8 - Prob. 81GPCh. 8 - Figure 8-59 illustrates an H20 molecule The O — H...Ch. 8 - A hollow cylinder (hoop) is rolling on a...Ch. 8 - Prob. 84GPCh. 8 - Prob. 85GPCh. 8 - Prob. 86GPCh. 8 - Prob. 87GPCh. 8 - Prob. 88GPCh. 8 - Prob. 89GPCh. 8 - Prob. 90GPCh. 8 - A large spool of rope rolls on the ground with the...Ch. 8 - The Moon orbits the Earth such that the same side...Ch. 8 - Prob. 93GPCh. 8 - Most of our Solar System's mass is contained in...Ch. 8 - Prob. 95GPCh. 8 - Prob. 96GP
Additional Science Textbook Solutions
Find more solutions based on key concepts
Choose the best answer to etch of the following. Explain your reasoning. What two pieces of information would y...
The Cosmic Perspective Fundamentals (2nd Edition)
The setup depicted in Figure 4.6 is used in a diffraction experiment using X-rays of 0.26 nm wavelength. Constr...
Modern Physics
18. A heavy lead block and a light aluminum block of equal size sit at rest at the bottom of a pool of water. I...
College Physics: A Strategic Approach (4th Edition)
Using the definitions in Eqs. 1.1 and 1.4, and appropriate diagrams, show that the dot product and cross produc...
Introduction to Electrodynamics
4. Accuracy is
the same as precision.
the smallest unit with which a measurement is made.
the number of signifi...
Applied Physics (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A system consists of a disk of mass 2.0 kg and radius 50 cm upon which is mounted an annular cylinder of mass 1.0 kg with inner radius 20 cm and outer radius 30 cm (see below). The system rotates about an axis through the center of the disk and annular cylinder at 10 rev/s. (a) What is the moment of inertia of the system? (b) What is its rotational kinetic energy?arrow_forwardWhile punting a football, a kicker rotates his leg about the hip joint. The moment of inertia of the leg is 3.75kgm2 and its rotational kinetic energy is 175 J. (a) What is the angular velocity of the leg? (b) What is the velocity of tip of the punter’s shoe if it is 1.05 m from the hip joint?arrow_forwardIn testing an automobile tire for proper alignment, a technicianmarks a spot on the tire 0.200 m from the center. He then mountsthe tire in a vertical plane and notes that the radius vector to thespot is at an angle of 35.0 with the horizontal. Starting from rest,the tire is spun rapidly with a constant angular acceleration of 3.00 rad/s2. a. What is the angular speed of the wheel after 4.00 s? b. What is the tangential speed of the spot after 4.00 s? c. What is the magnitude of the total accleration of the spot after 4.00 s?" d. What is the angular position of the spot after 4.00 s?arrow_forward
- A playground merry-go-round of radius R = 2.00 m has a moment of inertia I = 250 kg m2 and is rotating at 10.0 rev/min about a frictionless, vertical axle. Facing the axle, a 25.0-kg child hops onto the merry-go-round and manages to sit down on the edge. What is the new angular speed of the merry-go-round?arrow_forwardA wheel is rotating about a fixed axis with constant angular acceleration 3 rad/s2. At different moments, its angular speed is 2 rad/s, 0. and +2 rad/s. For a point on the rim of the wheel, consider at these moments the magnitude of the tangential component of acceleration and the magnitude of the radial component of acceleration. Rank the following five items from largest to smallest: (a) |at| when = 2 rad/s, (b)|ar| when = 2 rad/s, (c)|ar| when = 0, (d) |at| when = 2 rad/s, and (e) |ar| when = 2 rad/s. If two items are equal, show them as equal in your ranking. If a quantity is equal to zero, show that fact in your ranking.arrow_forwardA bug of mass 0.020 kg is at rest on the edge of a solid cylindrical disk (M=0.10kg,R=0.10m) rotating in a horizontal plane around the vertical axis through its center. The disk is rotating at 10.0 rad/s. The bug crawls to the center of the disk. (a) What is the new angular velocity of the disk? (b) What is the change in the kinetic energy of the system? (c) If the bug crawls back to the outer edge of the disk, what is the angular velocity of the disk then? (d) What is the new kinetic energy of the system? (e) What is the cause of the increase and decrease of kinetic energy?arrow_forward
- A disk with moment of inertia I1 rotates about a frictionless, vertical axle with angular speed i. A second disk, this one having moment of inertia I2 and initially not rotating, drops onto the first disk (Fig. P10.50). Because of friction between the surfaces, the two eventually reach the same angular speed f. (a) Calculate f. (b) Calculate the ratio of the final to the initial rotational energy. Figure P10.50arrow_forwardLara is running just outside the circumference of a carousel, looking for her favorite horse to ride, with a constant angular speed of 1.00 rad/s. Just as she spots the horse, one-fourth of the circumference ahead of her, the carousel begins to move, accelerating from rest at 0.050 rad/s2. a. Taking the time when the carousel begins to move as t = 0, when will Lara catch up to the horse? b. Lara mistakenly passes the horse and keeps running at constant angular speed. If the carousel continues to accelerate at the same rate, when will the horse draw even with Lara again?arrow_forwardA wheel starts from rest and in 12.65 s is rotating with an angular speed of 5.435 rad/s. a. Find the magnitude of theconstant angular acceleration of the wheel. b. Through whatangle does the wheel move in 6.325 s?arrow_forward
- A space station is coast me ted in the shape of a hollow ring of mass 5.00 104 kg. Members of the crew walk on a deck formed by the inner surface of the outer cylindrical wall of the ring, with radius r = 100 m. At rest when constructed, the ring is set rotating about its axis so that the people inside experience an effective free-fall acceleration equal to g. (Sec Fig. P11.29.) The rotation is achieved by firing two small rockets attached tangentially to opposite points on the rim of the ring, (a) What angular momentum does the space station acquirer (b) For what time interval must the rockets be fired if each exerts a thrust of 125 N?arrow_forwardConsider two objects with m1 m2 connected by a light string that passes over a pulley having a moment of inertia of I about its axis of rotation as shown in Figure P10.44. The string does not slip on the pulley or stretch. The pulley turns without friction. The two objects are released from rest separated by a vertical distance 2h. (a) Use the principle of conservation of energy to find the translational speeds of the objects as they pass each other. (b) Find the angular speed of the pulley at this time.arrow_forwardThe angular velocity of a flywheel with radius 1.0 m varies according to (t)=2.0t . Plot ac(t) and at(t) from t=0 to 3.0 s for r=1.0m . Analyze these results to explain when acat and when acat for a point on the flywheel at a radius of 1.0 m.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Moment of Inertia; Author: Physics with Professor Matt Anderson;https://www.youtube.com/watch?v=ZrGhUTeIlWs;License: Standard Youtube License