Essential University Physics
4th Edition
ISBN: 9780134988559
Author: Wolfson, Richard
Publisher: Pearson Education,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 8, Problem 66P
To determine
To show: that the potential energy difference
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In a certain binary-star system, each star has the a mass of 1.08 x 1030 kg, and they revolve about their center of mass. The distance between them is 1.9 × 108 km. What is their period of revolution in Earth
years?
X Y
Taking the age of Earth to be about 4 ✕ 109 years and assuming its orbital radius of 1.5 ✕ 1011 m has not changed and is circular, calculate the approximate total distance Earth has traveled since its birth (in a frame of reference stationary with respect to the Sun).
..............m
Answer and simplfy
A spacecraft in a geosynchronous orbit is given a tangential velocity
increment ("delta-V") of 2.0 km s¹, in a direction which increases its
velocity relative to the Earth. Calculate the L and e parameters for its new
orbit, and sketch its initial and final orbits.
[Additional Data: Sidereal Day = 86164 s.]
Chapter 8 Solutions
Essential University Physics
Ch. 8.2 - Suppose the distance between two objects is cut in...Ch. 8.3 - Suppose the paths in Fig. 8.8 are the paths of...Ch. 8.4 - Prob. 8.3GICh. 8 - What do Newtons apple and the Moon have in common?Ch. 8 - Prob. 2FTDCh. 8 - When you stand on Earth, the distance between you...Ch. 8 - The force of gravity on an object is proportional...Ch. 8 - A friend who knows nothing about physics asks what...Ch. 8 - Could you put a satellite in an orbit that keeps...Ch. 8 - Why are satellites generally launched eastward and...
Ch. 8 - Given Earths mass, the Moons distance and orbital...Ch. 8 - How should a satellite be launched so that its...Ch. 8 - Does the gravitational force of the Sun do work on...Ch. 8 - Space explorers land on a planet with the same...Ch. 8 - Use data for the Moons orbit from Appendix E to...Ch. 8 - Prob. 13ECh. 8 - Prob. 14ECh. 8 - Two identical lead spheres with their centers 14...Ch. 8 - Whats the approximate value of the gravitational...Ch. 8 - A sensitive gravimeter is carried to the top of...Ch. 8 - Prob. 18ECh. 8 - Find the speed of a satellite in geostationary...Ch. 8 - Marss orbit has a diameter 1.52 times that of...Ch. 8 - Calculate the orbital period for Jupiters moon Io,...Ch. 8 - An astronaut hits a golf ball horizontally from...Ch. 8 - The Mars Reconnaissance Orbiter circles the red...Ch. 8 - Earths distance from the Sun varies from 147 Gm at...Ch. 8 - Prob. 25ECh. 8 - A rocket is launched vertically upward from Earths...Ch. 8 - What vertical launch speed is necessary to get a...Ch. 8 - Prob. 28ECh. 8 - Determine escape speeds from (a) Jupiters moon...Ch. 8 - Prob. 30ECh. 8 - Prob. 31ECh. 8 - Prob. 32ECh. 8 - Example 8.2: Find the altitude and speed of a...Ch. 8 - Prob. 34ECh. 8 - Prob. 35ECh. 8 - Example 8.4: A coronal mass ejection (CME) is an...Ch. 8 - Example 8.4: In September 2017, the Cassini...Ch. 8 - The gravitational acceleration at a planets...Ch. 8 - Prob. 39PCh. 8 - If youre standing on the ground 15 m directly...Ch. 8 -
On January 1, 2019, the450-kg New Horizons...Ch. 8 - Equation 7.9 relates force to the derivative of...Ch. 8 - During the Apollo Moon landings, one astronaut...Ch. 8 - Prob. 44PCh. 8 - Prob. 45PCh. 8 - Prob. 46PCh. 8 - Prob. 47PCh. 8 - Satellites A and B are in circular orbits, with A...Ch. 8 - The asteroid that exploded over Chelyabinsk,...Ch. 8 - Prob. 50PCh. 8 - Prob. 51PCh. 8 - Neglecting air resistance, to what height would...Ch. 8 - Show that an object released from rest very far...Ch. 8 - Prob. 54PCh. 8 -
In 2017 North Korea developed ballistic missile...Ch. 8 - Prob. 56PCh. 8 - Prob. 57PCh. 8 - Prob. 58PCh. 8 - Prob. 59PCh. 8 - Two meteoroids are 160,000 km from Earths center...Ch. 8 - Prob. 62PCh. 8 - A missiles trajectory takes it to a maximum...Ch. 8 - Prob. 64PCh. 8 - Mercurys orbital speed varies from 38.8 km/s at...Ch. 8 - Prob. 66PCh. 8 - Two satellites are in geostationary orbit but in...Ch. 8 - Prob. 68PCh. 8 - Prob. 69PCh. 8 - We derived Equation 8.4 on the assumption that the...Ch. 8 - Prob. 71PCh. 8 - As a member of the 2040 Olympic committee, youre...Ch. 8 - The Olympic Committee is keeping you busy! Youre...Ch. 8 - Tidal forces are proportional to the variation in...Ch. 8 - Spacecraft that study the Sun are often placed at...Ch. 8 - Prob. 76PPCh. 8 - Prob. 77PPCh. 8 - Prob. 78PPCh. 8 - The Global Positioning System (GPS) uses a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Can you please help w/ the question in the pic? This is the data I have so far: 1. Determine the mass M of the massive object at the center of the Milky Way galaxy. Take the distance of one light year to be 9.461x10^15: answer= 4.26*10^37 2.Express your answer in solar masses instead of kilograms, where one solar mass is equal to the mass of the sun, which is 1.99*10^30: answer=2.14*10^7 TIAarrow_forwardWhen a falling meteoroid is at a distance above the Earth's surface of 2.60 times the Earth's radius, what is its acceleration due to the Earth's gravitation?(Note that 2.60 * RE is the distance above the Earth surface. What is the distance from the center of the Earth? m/s2 towards earth)arrow_forwardTaking the age of Earth to be about 4 ✕ 109 years and assuming its orbital radius of 1.5 ✕ 1011 m has not changed and is circular, calculate the approximate total distance Earth has traveled since its birth (in a frame of reference stationary with respect to the Sun). ..............m Answer and simplifyarrow_forward
- So let's consider a person with a mass of 51.0 kg standing on the Earth. To find the gravitational force on the person, we'll again use Newton's law of universal gravitation with the Earth as m2 and the radius of the Earth for the distance F = GmME RE2 . Now all we need to do is substitute values and calculate. We already said m = 51.0 kg, and we know G = 6.67 ✕ 10−11 N · m2/kg2. The Earth is not a perfect sphere, but, its average radius is RE = 6.37 ✕ 106 m. The mass of the Earth is ME = 5.97 ✕ 10−24 kg. We can then substitute these values in the following formula. (Enter your answer in N.) F = (6.67 ✕ 10−11 N · m2/kg2)(51.0 kg)(5.97 ✕ 1024 kg) (6.37 ✕ 106 m)2 (A) = _______ N Now let's compare this result to the person's weight (in N) found by multiplying the person's mass by g (or, that is, w = mg) where g = 9.80 m/s2. w = (51.0 kg)(9.80 m/s2) =(b) __________________ N You should have found that these two methods give about the same result!…arrow_forwardThe answer key to this problem is stated as follows: x(t) = (4.0 cm)cos[(2π/8.0 s)t - π/3.0] Did they get the answer wrong? How you solved the problem landed with 'pi/6' In the answer key, it is with 'pi/3). Can you please explain?arrow_forwardPlaskett's binary system consists of two stars that revolve in a circular orbit about a center of mass midway between them. This statement implies that the masses of the two stars are equal (see figure below). Assume the orbital speed of each star is |v| 190 km/s and the orbital period of each is 12.9 days. Find the mass M of each star. (For comparison, the mass of our Sun is 1.99 x 1030 kg.) solar masses M XCM Marrow_forward
- Do all partsarrow_forwardPlaskett's binary system consists of two stars that revolve in a circular orbit about a center of mass midway between them. This statement implies that the masses of the two stars are equal (see figure below). Assume the orbital speed of each star is |v| 190 km/s and the orbital period of each is 12.9 days. Find the mass M of each star. (For comparison, the mass of our Sun is 1.99 x 1030 kg.) 18.33 You may have used the diameter of the circle in calculating the centripetal acceleration rather than the radius. solar masses M XCM Marrow_forward4G 1hl K/s 5.8 O . b O: 14|+ 2:20 E April 12, 2021 2:20 AM A satellite rotates around the earth with uniform circular motion at a radius of 6400 km. and a period of (1 day=86400sec). What is the speed of the satellite (m/s)? O 1.3 O31 O 0.22 O 0.77 O 0.47 Share Favorite Edit Delete Morearrow_forward
- The radius Rh of a black hole is the radius of a mathematical sphere, called the event horizon, that is centered on the black hole. Information from events inside the event horizon cannot reach the outside world. According to Einstein's general theory of relativity, Rh = 2GM/c2, where M is the mass of the black hole and c is the speed of light. Suppose that you wish to study a black hole near it, at a radial distance of 48Rh. However, you do not want the difference in gravitational acceleration between your feet and your head to exceed 10 m/s2 when you are feet down (or head down) toward the black hole. (a) Take your height to be 1.5 m. What is the limit to the mass of the black hole you can tolerate at the given radial distance? Give the ratio of this mass to the mass MS of our Sun.arrow_forwardThe radius Rh of a black hole is the radius of a mathematical sphere, called the event horizon, that is centered on the black hole. Information from events inside the event horizon cannot reach the outside world. According to Einstein's general theory of relativity, Rh = 2GM/c2, where M is the mass of the black hole and c is the speed of light. Suppose that you wish to study a black hole near it, at a radial distance of 48Rh. However, you do not want the difference in gravitational acceleration between your feet and your head to exceed 10 m/s2 when you are feet down (or head down) toward the black hole. (a) Take your height to be 1.5 m. What is the limit to the mass of the black hole you can tolerate at the given radial distance? Give the ratio of this mass to the mass MS of our Sun. (b) Is the ratio an upper limit estimate or a lower limit estimate?arrow_forwardC6M.9 Astar with mass M and radius R collides with another star of massM and radius R, and coalesce to form a new star at rest whose radius is R. Assume that initially the colliding stars had angular velocities with opposite direc- tions but the same magnitude | What is the magnitude and direction of the final star's angular velocity? (Express the magnitude as a fraction of )arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON