Essential University Physics
4th Edition
ISBN: 9780134988559
Author: Wolfson, Richard
Publisher: Pearson Education,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 8, Problem 18E
To determine
The required altitude will a satellite completes a circular orbit of the Earth in
2 h
.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An artificial satellite is traveling 8.0 x 10 m/s in a circular orbit. Assuming g= 9.7 m/s at that altitude, what is
the orbital radius of the satellite?
What velocity would a satellite need to maintain a circular orbit at a height h = RE (RE = 6.37 x 103 km) above the surface of the Earth (ME = 5.97 x 1024 kg)?
A geosynchronous orbit for a satellite is a circular orbit about the equator of the Earth in which the satellite stays fixed over a point on the equator. Use the fact that the Earth makes one revolution about its axis every 24 hours to find the altitude in miles of a communications satellite in geosynchronous orbit. Assume the Earth to be a sphere of radius 4000 mi.
Chapter 8 Solutions
Essential University Physics
Ch. 8.2 - Suppose the distance between two objects is cut in...Ch. 8.3 - Suppose the paths in Fig. 8.8 are the paths of...Ch. 8.4 - Prob. 8.3GICh. 8 - What do Newtons apple and the Moon have in common?Ch. 8 - Prob. 2FTDCh. 8 - When you stand on Earth, the distance between you...Ch. 8 - The force of gravity on an object is proportional...Ch. 8 - A friend who knows nothing about physics asks what...Ch. 8 - Could you put a satellite in an orbit that keeps...Ch. 8 - Why are satellites generally launched eastward and...
Ch. 8 - Given Earths mass, the Moons distance and orbital...Ch. 8 - How should a satellite be launched so that its...Ch. 8 - Does the gravitational force of the Sun do work on...Ch. 8 - Space explorers land on a planet with the same...Ch. 8 - Use data for the Moons orbit from Appendix E to...Ch. 8 - Prob. 13ECh. 8 - Prob. 14ECh. 8 - Two identical lead spheres with their centers 14...Ch. 8 - Whats the approximate value of the gravitational...Ch. 8 - A sensitive gravimeter is carried to the top of...Ch. 8 - Prob. 18ECh. 8 - Find the speed of a satellite in geostationary...Ch. 8 - Marss orbit has a diameter 1.52 times that of...Ch. 8 - Calculate the orbital period for Jupiters moon Io,...Ch. 8 - An astronaut hits a golf ball horizontally from...Ch. 8 - The Mars Reconnaissance Orbiter circles the red...Ch. 8 - Earths distance from the Sun varies from 147 Gm at...Ch. 8 - Prob. 25ECh. 8 - A rocket is launched vertically upward from Earths...Ch. 8 - What vertical launch speed is necessary to get a...Ch. 8 - Prob. 28ECh. 8 - Determine escape speeds from (a) Jupiters moon...Ch. 8 - Prob. 30ECh. 8 - Prob. 31ECh. 8 - Prob. 32ECh. 8 - Example 8.2: Find the altitude and speed of a...Ch. 8 - Prob. 34ECh. 8 - Prob. 35ECh. 8 - Example 8.4: A coronal mass ejection (CME) is an...Ch. 8 - Example 8.4: In September 2017, the Cassini...Ch. 8 - The gravitational acceleration at a planets...Ch. 8 - Prob. 39PCh. 8 - If youre standing on the ground 15 m directly...Ch. 8 -
On January 1, 2019, the450-kg New Horizons...Ch. 8 - Equation 7.9 relates force to the derivative of...Ch. 8 - During the Apollo Moon landings, one astronaut...Ch. 8 - Prob. 44PCh. 8 - Prob. 45PCh. 8 - Prob. 46PCh. 8 - Prob. 47PCh. 8 - Satellites A and B are in circular orbits, with A...Ch. 8 - The asteroid that exploded over Chelyabinsk,...Ch. 8 - Prob. 50PCh. 8 - Prob. 51PCh. 8 - Neglecting air resistance, to what height would...Ch. 8 - Show that an object released from rest very far...Ch. 8 - Prob. 54PCh. 8 -
In 2017 North Korea developed ballistic missile...Ch. 8 - Prob. 56PCh. 8 - Prob. 57PCh. 8 - Prob. 58PCh. 8 - Prob. 59PCh. 8 - Two meteoroids are 160,000 km from Earths center...Ch. 8 - Prob. 62PCh. 8 - A missiles trajectory takes it to a maximum...Ch. 8 - Prob. 64PCh. 8 - Mercurys orbital speed varies from 38.8 km/s at...Ch. 8 - Prob. 66PCh. 8 - Two satellites are in geostationary orbit but in...Ch. 8 - Prob. 68PCh. 8 - Prob. 69PCh. 8 - We derived Equation 8.4 on the assumption that the...Ch. 8 - Prob. 71PCh. 8 - As a member of the 2040 Olympic committee, youre...Ch. 8 - The Olympic Committee is keeping you busy! Youre...Ch. 8 - Tidal forces are proportional to the variation in...Ch. 8 - Spacecraft that study the Sun are often placed at...Ch. 8 - Prob. 76PPCh. 8 - Prob. 77PPCh. 8 - Prob. 78PPCh. 8 - The Global Positioning System (GPS) uses a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Suppose the gravitational acceleration at the surface of a certain moon A of Jupiter is 2 m/s2. Moon B has twice the mass and twice the radius of moon A. What is the gravitational acceleration at its surface? Neglect the gravitational acceleration due to Jupiter, (a) 8 m/s2 (b) 4 m/s2 (c) 2 m/s2 (d) 1 m/s2 (e) 0.5 m/s2arrow_forwardModel the Moons orbit around the Earth as an ellipse with the Earth at one focus. The Moons farthest distance (apogee) from the center of the Earth is rA = 4.05 108 m, and its closest distance (perigee) is rP = 3.63 108 m. a. Calculate the semimajor axis of the Moons orbit. b. How far is the Earth from the center of the Moons elliptical orbit? c. Use a scale such as 1 cm 108 m to sketch the EarthMoon system at apogee and at perigee and the Moons orbit. (The semiminor axis of the Moons orbit is roughly b = 3.84 108 m.)arrow_forwardA geosynchronous Earth satellite is one that has an orbital period of precisely 1 day. Such orbits are sueful for communication and weather observation because the satellite remains above the same point on Earth (provided it orbits in the equatorial plane in the same direction as Earth’s rotation). Calculate the radius of such an orbit based on the data for Earth in Appendis D.arrow_forward
- The astronaut orbiting the Earth in Figure P3.27 is preparing to dock with a Westar VI satellite. The satellite is in a circular orbit 600 km above the Earth’s surface, where the free-fall acceleration is 8.21 m/s2. Take the radius of the Earth as 6 400 km. Determine the speed of the satellite and the time interval required to complete one orbit around the Earth, which is the period of the satellite. Figure P3.27arrow_forwardLet gM represent the difference in the gravitational fields produced by the Moon at the points on the Earths surface nearest to and farthest from the Moon. Find the fraction gM/g, where g is the Earths gravitational field. (This difference is responsible for the occurrence of the lunar tides on the Earth.)arrow_forwardIf a spacecraft is headed for the outer solar system, it may require several gravitational slingshots with planets in the inner solar system. If a spacecraft undergoes a head-on slingshot with Venus as in Example 11.6, find the spacecrafts change in speed vS. Hint: Venuss orbital period is 1.94 107 s, and its average distance from the Sun is 1.08 1011 m.arrow_forward
- (a) What linear speed must an Earth satellite have to be in a circular orbit at an altitude of 182 km? m/s (b) What is the period of revolution? minarrow_forwardA 2.00 x 102 kg satellite is in circular orbit at a height of 6.00 x 102 km above the earth’s surface a. Solve for the speed of the satellite.arrow_forwardA satellite is in a circular orbit around the Earth at an altitude of 2.80 x 10^6 m. Find a) the period of the orbit, b) the speed of the satellite, and c) the acceleration of the satellite. (Please explain how you reach your answer)arrow_forward
- A 700 Kg satellite is placed h = 2.5 x 10^5 m above the earth. If the gravitational pull of earth is equal to the centripetal force on the satellite, determine the speed of the satellite in its orbit. Earth mass: 5.98 x 10^24 Earth radius = 6.67 x 10^ -11 Nm^2/Kg^2arrow_forwardA satellite moves in a circular orbit a distance of 1.6×105m above Earth's surface. Determine the speed of the satellite.arrow_forwardwhat is the velocity of an artificial satellite orbiting the earth in a circular orbit at the height of 1.0 x 105 m above the earth surface?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning