
(a)
Interpretation:
Reagents should be predicted for the given transformations.
Concept introduction:
- Reagent: reagent is a compound or compound mixture that is used in the chemical transformation of the reactions. Reagents for some reactions are given below.
- Elimination reaction: in elimination reaction, two substituents are removed from the substrate to give the product in presence of base.
- Elimination of compound in presence of bulky base leads to less substituted
alkene , in presence of strong base (not bulky) leads to more substituted alkene. - Addition reaction: in addition reaction, two substituents are added to the reactant without losing any compound.
- Hydration: addition of water molecule across the double bond is called hydration reaction. Hydration of alkene can be achieved in many ways.
- Oxy mercuration-demercuration: this process undergoes through the addition of water according to Markovnikov’s rule without forming carbocation as intermediate.
- Hydroboration-oxidation reaction: addition of –H and –OH group across the double bond in presence of borane and hydrogen peroxide with base is known as hydroboration-oxidation reaction.
- Simple hydration in acidic media gives the addition product through carbocation intermediate.
- Hydro halogenation: hydrogen and halogen added across the double bond of the alkene in Markovnikov’s path is called hydro halogenation. This addition reaction proceeds via anti-Markovnikov’s path in presence of peroxides.
To find: the reagent for the given transformation.
(b)
Interpretation:
Reagents should be predicted for the given transformations.
Concept introduction:
- Reagent: reagent is a compound or compound mixture that is used in the chemical transformation of the reactions. Reagents for some reactions are given below.
- Elimination reaction: in elimination reaction, two substituents are removed from the substrate to give the product in presence of base.
- Elimination of compound in presence of bulky base leads to less substituted alkene, in presence of strong base (not bulky) leads to more substituted alkene.
- Addition reaction: in addition reaction, two substituents are added to the reactant without losing any compound.
- Hydration: addition of water molecule across the double bond is called hydration reaction. Hydration of alkene can be achieved in many ways.
- Oxy mercuration-demercuration: this process undergoes through the addition of water according to Markovnikov’s rule without forming carbocation as intermediate.
- Hydroboration-oxidation reaction: addition of –H and –OH group across the double bond in presence of borane and hydrogen peroxide with base is known as hydroboration-oxidation reaction.
- Simple hydration in acidic media gives the addition product through carbocation intermediate.
- Hydro halogenation: hydrogen and halogen added across the double bond of the alkene in Markovnikov’s path is called hydro halogenation. This addition reaction proceeds via anti-Markovnikov’s path in presence of peroxides.
To find: the reagent for the given transformation.
(c)
Interpretation:
Reagents should be predicted for the given transformations.
Concept introduction:
- Reagent: reagent is a compound or compound mixture that is used in the chemical transformation of the reactions. Reagents for some reactions are given below.
- Elimination reaction: in elimination reaction, two substituents are removed from the substrate to give the product in presence of base.
- Elimination of compound in presence of bulky base leads to less substituted alkene, in presence of strong base (not bulky) leads to more substituted alkene.
- Addition reaction: in addition reaction, two substituents are added to the reactant without losing any compound.
- Hydration: addition of water molecule across the double bond is called hydration reaction. Hydration of alkene can be achieved in many ways.
- Oxy mercuration-demercuration: this process undergoes through the addition of water according to Markovnikov’s rule without forming carbocation as intermediate.
- Hydroboration-oxidation reaction: addition of –H and –OH group across the double bond in presence of borane and hydrogen peroxide with base is known as hydroboration-oxidation reaction.
- Simple hydration in acidic media gives the addition product through carbocation intermediate.
- Hydro halogenation: hydrogen and halogen added across the double bond of the alkene in Markovnikov’s path is called hydro halogenation. This addition reaction proceeds via anti-Markovnikov’s path in presence of peroxides.
To find: the reagent for the given transformation.
(d)
Interpretation:
Reagents should be predicted for the given transformations.
Concept introduction:
- Reagent: reagent is a compound or compound mixture that is used in the chemical transformation of the reactions. Reagents for some reactions are given below.
- Elimination reaction: in elimination reaction, two substituents are removed from the substrate to give the product in presence of base.
- Elimination of compound in presence of bulky base leads to less substituted alkene, in presence of strong base (not bulky) leads to more substituted alkene.
- Addition reaction: in addition reaction, two substituents are added to the reactant without losing any compound.
- Hydration: addition of water molecule across the double bond is called hydration reaction. Hydration of alkene can be achieved in many ways.
- Oxy mercuration-demercuration: this process undergoes through the addition of water according to Markovnikov’s rule without forming carbocation as intermediate.
- Hydroboration-oxidation reaction: addition of –H and –OH group across the double bond in presence of borane and hydrogen peroxide with base is known as hydroboration-oxidation reaction.
- Simple hydration in acidic media gives the addition product through carbocation intermediate.
- Hydro halogenation: hydrogen and halogen added across the double bond of the alkene in Markovnikov’s path is called hydro halogenation. This addition reaction proceeds via anti-Markovnikov’s path in presence of peroxides.
To find: the reagent for the given transformation.
(e)
Interpretation:
Reagents should be predicted for the given transformations.
Concept introduction:
- Reagent: reagent is a compound or compound mixture that is used in the chemical transformation of the reactions. Reagents for some reactions are given below.
- Elimination reaction: in elimination reaction, two substituents are removed from the substrate to give the product in presence of base.
- Elimination of compound in presence of bulky base leads to less substituted alkene, in presence of strong base (not bulky) leads to more substituted alkene.
- Addition reaction: in addition reaction, two substituents are added to the reactant without losing any compound.
- Hydration: addition of water molecule across the double bond is called hydration reaction. Hydration of alkene can be achieved in many ways.
- Oxy mercuration-demercuration: this process undergoes through the addition of water according to Markovnikov’s rule without forming carbocation as intermediate.
- Hydroboration-oxidation reaction: addition of –H and –OH group across the double bond in presence of borane and hydrogen peroxide with base is known as hydroboration-oxidation reaction.
- Simple hydration in acidic media gives the addition product through carbocation intermediate.
- Hydro halogenation: hydrogen and halogen added across the double bond of the alkene in Markovnikov’s path is called hydro halogenation. This addition reaction proceeds via anti-Markovnikov’s path in presence of peroxides.
To find: the reagent for the given transformation.
(f)
Interpretation:
Reagents should be predicted for the given transformations.
Concept introduction:
- Reagent: reagent is a compound or compound mixture that is used in the chemical transformation of the reactions. Reagents for some reactions are given below.
- Elimination reaction: in elimination reaction, two substituents are removed from the substrate to give the product in presence of base.
- Elimination of compound in presence of bulky base leads to less substituted alkene, in presence of strong base (not bulky) leads to more substituted alkene.
- Addition reaction: in addition reaction, two substituents are added to the reactant without losing any compound.
- Hydration: addition of water molecule across the double bond is called hydration reaction. Hydration of alkene can be achieved in many ways.
- Oxy mercuration-demercuration: this process undergoes through the addition of water according to Markovnikov’s rule without forming carbocation as intermediate.
- Hydroboration-oxidation reaction: addition of –H and –OH group across the double bond in presence of borane and hydrogen peroxide with base is known as hydroboration-oxidation reaction.
- Simple hydration in acidic media gives the addition product through carbocation intermediate.
- Hydro halogenation: hydrogen and halogen added across the double bond of the alkene in Markovnikov’s path is called hydro halogenation. This addition reaction proceeds via anti-Markovnikov’s path in presence of peroxides.
To find: the reagent for the given transformation.
(g)
Interpretation:
Reagents should be predicted for the given transformations.
Concept introduction:
- Reagent: reagent is a compound or compound mixture that is used in the chemical transformation of the reactions. Reagents for some reactions are given below.
- Elimination reaction: in elimination reaction, two substituents are removed from the substrate to give the product in presence of base.
- Elimination of compound in presence of bulky base leads to less substituted alkene, in presence of strong base (not bulky) leads to more substituted alkene.
- Addition reaction: in addition reaction, two substituents are added to the reactant without losing any compound.
- Hydration: addition of water molecule across the double bond is called hydration reaction. Hydration of alkene can be achieved in many ways.
- Oxy mercuration-demercuration: this process undergoes through the addition of water according to Markovnikov’s rule without forming carbocation as intermediate.
- Hydroboration-oxidation reaction: addition of –H and –OH group across the double bond in presence of borane and hydrogen peroxide with base is known as hydroboration-oxidation reaction.
- Simple hydration in acidic media gives the addition product through carbocation intermediate.
- Hydro halogenation: hydrogen and halogen added across the double bond of the alkene in Markovnikov’s path is called hydro halogenation. This addition reaction proceeds via anti-Markovnikov’s path in presence of peroxides.
To find: the reagent for the given transformation.
(h)
Interpretation:
Reagents should be predicted for the given transformations.
Concept introduction:
- Reagent: reagent is a compound or compound mixture that is used in the chemical transformation of the reactions. Reagents for some reactions are given below.
- Elimination reaction: in elimination reaction, two substituents are removed from the substrate to give the product in presence of base.
- Elimination of compound in presence of bulky base leads to less substituted alkene, in presence of strong base (not bulky) leads to more substituted alkene.
- Addition reaction: in addition reaction, two substituents are added to the reactant without losing any compound.
- Hydration: addition of water molecule across the double bond is called hydration reaction. Hydration of alkene can be achieved in many ways.
- Oxy mercuration-demercuration: this process undergoes through the addition of water according to Markovnikov’s rule without forming carbocation as intermediate.
- Hydroboration-oxidation reaction: addition of –H and –OH group across the double bond in presence of borane and hydrogen peroxide with base is known as hydroboration-oxidation reaction.
- Simple hydration in acidic media gives the addition product through carbocation intermediate.
- Hydro halogenation: hydrogen and halogen added across the double bond of the alkene in Markovnikov’s path is called hydro halogenation. This addition reaction proceeds via anti-Markovnikov’s path in presence of peroxides.
To find: the reagent for the given transformation.
(i)
Interpretation:
Reagents should be predicted for the given transformations.
Concept introduction:
- Reagent: reagent is a compound or compound mixture that is used in the chemical transformation of the reactions. Reagents for some reactions are given below.
- Elimination reaction: in elimination reaction, two substituents are removed from the substrate to give the product in presence of base.
- Elimination of compound in presence of bulky base leads to less substituted alkene, in presence of strong base (not bulky) leads to more substituted alkene.
- Addition reaction: in addition reaction, two substituents are added to the reactant without losing any compound.
- Hydration: addition of water molecule across the double bond is called hydration reaction. Hydration of alkene can be achieved in many ways.
- Oxy mercuration-demercuration: this process undergoes through the addition of water according to Markovnikov’s rule without forming carbocation as intermediate.
- Hydroboration-oxidation reaction: addition of –H and –OH group across the double bond in presence of borane and hydrogen peroxide with base is known as hydroboration-oxidation reaction.
- Simple hydration in acidic media gives the addition product through carbocation intermediate.
- Hydro halogenation: hydrogen and halogen added across the double bond of the alkene in Markovnikov’s path is called hydro halogenation. This addition reaction proceeds via anti-Markovnikov’s path in presence of peroxides.
To find: the reagent for the given transformation.
(j)
Interpretation:
Reagents should be predicted for the given transformations.
Concept introduction:
- Reagent: reagent is a compound or compound mixture that is used in the chemical transformation of the reactions. Reagents for some reactions are given below.
- Elimination reaction: in elimination reaction, two substituents are removed from the substrate to give the product in presence of base.
- Elimination of compound in presence of bulky base leads to less substituted alkene, in presence of strong base (not bulky) leads to more substituted alkene.
- Addition reaction: in addition reaction, two substituents are added to the reactant without losing any compound.
- Hydration: addition of water molecule across the double bond is called hydration reaction. Hydration of alkene can be achieved in many ways.
- Oxy mercuration-demercuration: this process undergoes through the addition of water according to Markovnikov’s rule without forming carbocation as intermediate.
- Hydroboration-oxidation reaction: addition of –H and –OH group across the double bond in presence of borane and hydrogen peroxide with base is known as hydroboration-oxidation reaction.
- Simple hydration in acidic media gives the addition product through carbocation intermediate.
- Hydro halogenation: hydrogen and halogen added across the double bond of the alkene in Markovnikov’s path is called hydro halogenation. This addition reaction proceeds via anti-Markovnikov’s path in presence of peroxides.
To find: the reagent for the given transformation.
(k)
Interpretation:
Reagents should be predicted for the given transformations.
Concept introduction:
- Reagent: reagent is a compound or compound mixture that is used in the chemical transformation of the reactions. Reagents for some reactions are given below.
- Elimination reaction: in elimination reaction, two substituents are removed from the substrate to give the product in presence of base.
- Elimination of compound in presence of bulky base leads to less substituted alkene, in presence of strong base (not bulky) leads to more substituted alkene.
- Addition reaction: in addition reaction, two substituents are added to the reactant without losing any compound.
- Hydration: addition of water molecule across the double bond is called hydration reaction. Hydration of alkene can be achieved in many ways.
- Oxy mercuration-demercuration: this process undergoes through the addition of water according to Markovnikov’s rule without forming carbocation as intermediate.
- Hydroboration-oxidation reaction: addition of –H and –OH group across the double bond in presence of borane and hydrogen peroxide with base is known as hydroboration-oxidation reaction.
- Simple hydration in acidic media gives the addition product through carbocation intermediate.
- Hydro halogenation: hydrogen and halogen added across the double bond of the alkene in Markovnikov’s path is called hydro halogenation. This addition reaction proceeds via anti-Markovnikov’s path in presence of peroxides.
To find: the reagent for the given transformation.

Want to see the full answer?
Check out a sample textbook solution
Chapter 8 Solutions
EBK ORGANIC CHEMISTRY AS A SECOND LANGU
- please provide the structure for this problem, thank youarrow_forwardpresented by Morallen Lig Intermine the hand product for the given mution by adding atoms, bonds, nonhonding diarion panda скуль Step 3: Comp the draw the product Step 2: Agama workup Compithe 429 ملولةarrow_forwardReaction A 0,0arrow_forward
- presented by Morillon Leaning Predict the organic product for the min кусур HSC Adithane carved arnown to come than that to the condon slchroruis in acid in in aquishri with ноюarrow_forward6.15PM Sun Mar 30 K Draw the major product of this reaction. Include any relevant stereochemistry. Ignore inorganic byproducts. Problem 1 of O H [PhзPCH2CH3]*C|¯ NaH Drawing > Q Atoms, Bonds and Draw or tap a nearrow_forward8:17 PM Sun Mar 30 Draw the major product of this reaction. Ignore inorganic byproducts. HSCH2CH2CH2SH, BF3 Probler Drawing Ato Bonds Clarrow_forward
- Name the major organic product of the following action of 4-chloro-4-methyl-1-pentanol in neutral pollution 10+ Now the product. The product has a molecular formula f b. In a singly hain, the starting, material again converts into a secule with the molecular kormula CIO. but with comply Draw the major organic structure inhalationarrow_forwardMacmillan Learning Alcohols can be oxidized by chromic acid derivatives. One such reagent is pyridinium chlorochromate, (C,H,NH*)(CICTO3), commonly known as PCC. Draw the proposed (neutral) intermediate and the organic product in the oxidation of 1-butanol by PCC when carried out in an anhydrous solvent such as CH₂C₁₂. PCC Intermediate OH CH2Cl2 Draw the intermediate. Select Draw Templates More с H Cr о Product Draw the product. Erase Select Draw Templates More H о Erasearrow_forwardIf I have 1-bromopropene, to obtain compound A, I have to add NaOH and another compound. Indicate which compound that would be. A C6H5 CH3arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





