Concept explainers
Hershey–Chase Experiments The graph shown in FIGURE 8.5 is reproduced from an original 1952 publication by Hershey and Chase. Bacteriophage were labeled with radioactive tracers and allowed 10 infect bacteria. The virus–bacteria mixtures were then whirled in a blender to dislodge any viral components attached to the exterior of the bacteria. Afterward, radioactivity from the tracers was measured.
FIGURE 8.5 Detail of Alfred Hershey and Martha Chase’s 1952 publication describing their experiments with bacteriophage.
“Infected bacteria” refers to the percentage of bacteria that survived the blender.
Do these results imply that viruses inject DNA or protein into bacteria? Why or why not?
Trending nowThis is a popular solution!
Chapter 8 Solutions
Biology: The Unity and Diversity of Life (MindTap Course List)
Additional Science Textbook Solutions
Biology: Life on Earth with Physiology (11th Edition)
Microbiology Fundamentals: A Clinical Approach
Human Physiology: An Integrated Approach (8th Edition)
Fundamentals Of Thermodynamics
Applications and Investigations in Earth Science (9th Edition)
- a) What differences would you expect to see between the -DNA/+Amp and +DNA/+Amp plates? b) Predict the growth you would expect to see on each of the following plates: – DNA ___________________________________________________________ – DNA/+Amp ______________________________________________________ +DNA/+Amp ______________________________________________________ +DNA/+Amp/+IPTG _________________________________________________arrow_forward1)Which plate did you see purple/pink/blue bacterial cells? Why did you see this growth? Explain your answer in terms of transformation and plasmids? 2) Calculating Transformation Efficiency For the +DNA/+Amp/+IPTG plate, record the following: Number of transformants (colonies): _________________ Nanograms of plasmid DNA added: 50 ng Final recovery volume: 0.50 mL Volume plated: 0.25 mL Transformation efficiency equation: Transformation efficiency = Number of transformants / µg of DNA x Final volume at recovery (mL)/ volume plated (mL) 3) Using the equation above, calculate the transformation efficiency. 4) Describe the success of the transformation efficiency of this demo based on the calculation you did above?arrow_forwardOverview of Transformation Protocol -Prepare competent bacteria for transformation: Treat starter E. coli bacteria with CaCl2and Competent Cell Solution (CCS). Store on ice until transformation procedure. Competent cells are cells that are likely to take up foreign DNA and be transformed. This step increases the likelihood that the E. coli cells will take up the introduced vector and be transformed. -Transformation procedure: Obtain two microcentrifuge tubes containing your competent cells. Label one tube +DNA and one -DNA. Add CaCl2 to both tubes. Add the transformation mix containing the plasmid DNA to the tube labeled +DNA. Do not add any plasmid DNA to the -DNA tube. Incubate both tubes on ice for 10 minutes. Then, place both tubes in a 42\deg C water bath for 45 seconds. Replace the tubes in an ice bucket for 2 minutes. Add recovery broth to both tubes. Incubate both tubes in a 37 C water bath for 5 minutes. Questions: 1) What differences would you expect to see between the…arrow_forward
- Overview of Transformation Protocol -Prepare competent bacteria for transformation: Treat starter E. coli bacteria with CaCl2and Competent Cell Solution (CCS). Store on ice until transformation procedure. Competent cells are cells that are likely to take up foreign DNA and be transformed. This step increases the likelihood that the E. coli cells will take up the introduced vector and be transformed. -Transformation procedure: Obtain two microcentrifuge tubes containing your competent cells. Label one tube +DNA and one -DNA. Add CaCl2 to both tubes. Add the transformation mix containing the plasmid DNA to the tube labeled +DNA. Do not add any plasmid DNA to the -DNA tube. Incubate both tubes on ice for 10 minutes. Then, place both tubes in a 42\deg C water bath for 45 seconds. Replace the tubes in an ice bucket for 2 minutes. Add recovery broth to both tubes. Incubate both tubes in a 37 C water bath for 5 minutes. Questions: 1)What is the selectable marker in this experiment? How…arrow_forwardBased on your results, which suspect's DNA best matches the DNA found at the crime scene?arrow_forwardIn oxidase test with Pseudomonas aeruginosa, the cell cultures on the slide turn colorless to be purple after tetra-methyl-p-phenylenediamine dihydrochloride (TMPD) is added. In the reaction, OTMPD is electron acceptor O cytochrome c is the electron source oxygen is terminal electron acceptor OH2 produced is electron donorarrow_forward
- You will use the following scenario to answer a group of 5 questions. You have isolated a microbe from an environmental sample. The microbe has the ability to perform a new metabolic reaction at a very low temperature, so you are excited that it could be a new species. You have shipped your samples off for sequencing and are now waiting for the results. Out of curiosity (and maybe boredom...) you decide to test your culture for the Catalase and Oxidase enzymes. Upon testing your sample for catalase, you don't see any bubbles; however, you do see a color change to purple during the Oxidase test. What results can you conclude from this? O Catalase-/ Oxidase + O Catalase +/ Oxidase + Catalase + / Oxidase- O Catalase / Oxidase - O None of the abovearrow_forwardWhich of the following is not a strength of using 16S rRNA for phylogenetic analyses? OA. It's cheap OB. It's easy to do C. It can be used to identify all the way down to the strain level OD. Both A & B OE. None of the abovearrow_forwardWhy are molecular approaches important to the field of microbial taxonomy and phylogeny? Phylogenetic inferences based on molecular approaches provide the most robust analysis of microbial evolution currently available. It allows for the collection of a large and accurate dataset from many organisms Almost no fossil record was left by microbes when compared to plants and animals All of the above None of the abovearrow_forward
- You will use the following scenario to answer a group of 5 questions. You have isolated a microbe from an environmental sample. The microbe has the ability to perform a new metabolic reaction at a very low temperature, so you are excited that it could be a new species. You have already cultured it and gone through the plate isolation procedure. Before you ship your samples off for sequencing, you want to do one final check of the A260 ratios. You get back the following ratios: A260/280 ratio is 1.89; A260/230 is 2.01. These ratios are close enough to the accepted "pure" values so they could be considered "pure" and mostly (if not completely) free of contaminants from the PCR process. True Falsearrow_forwardYou will use the following scenario to answer a group of 5 questions. You have isolated a microbe from an environmental sample. The microbe has the ability to perform a new metabolic reaction at a very low temperature, so you are excited that it could be a new species. After receiving your sequence back from the sequencing lab, you feel that you have, in fact, discovered and isolated a new species. You ask a fellow labmate about how you should proceed, and he tells you the following is the proper way to introduce a new species for recognition: Cultures have to be sent to international culture collections. Then a paper must be published describing the new organism and providing a genus and species name. You recall learning about this in your Microbiology course in college. Is this information from your colleague true or false? True Falsearrow_forwardis often a good indication of phylogenetic relatedness in phenotypes. Life-cycle patterns Cleavage patterns O Gene expression O Morphological similarityarrow_forward
- Biology: The Unity and Diversity of Life (MindTap...BiologyISBN:9781305073951Author:Cecie Starr, Ralph Taggart, Christine Evers, Lisa StarrPublisher:Cengage LearningBiology 2eBiologyISBN:9781947172517Author:Matthew Douglas, Jung Choi, Mary Ann ClarkPublisher:OpenStaxHuman Heredity: Principles and Issues (MindTap Co...BiologyISBN:9781305251052Author:Michael CummingsPublisher:Cengage Learning